Select Page

Due Diligence

Your due diligence is probably wrong

Global Advisors: a consulting leader in defining quantified strategy, decreasing uncertainty, improving decisions, achieving measureable results.

Learn MoreThe Global Advisors due diligence practice

Our latest perspective - What's behind under-performing listed companies?

Outperform through the downturn

Experienced hires

We are hiring experienced top-tier strategy consultants

Quantified Strategy

Decreased uncertainty, improved decisions

Global Advisors is a leader in defining quantified strategies, decreasing uncertainty, improving decisions and achieving measureable results.

We specialise in providing highly-analytical data-driven recommendations in the face of significant uncertainty.

We utilise advanced predictive analytics to build robust strategies and enable our clients to make calculated decisions.

We support implementation of adaptive capability and capacity.

Our latest

Thoughts

No Results Found

The page you requested could not be found. Try refining your search, or use the navigation above to locate the post.

Strategy Tools

Strategy Tools: Pareto (80/20) analysis

Strategy Tools: Pareto (80/20) analysis

Pareto (80/20) analysis - illustrative example

Pareto Analysis is a statistical technique for decision making that is used for selecting a number of tasks that produce significant overall effect.1 It is based on the Pareto Principle (the 80/20 rule) which states that by doing 20% of the work you can generate 80% of the benefit of doing the whole job. The Pareto Analysis is named after Vilfredo Pareto, an Italian economist who lived in the late 19th and early 20th centuries. In 1897, he presented a formula that showed that income was distributed unevenly, with about 80% of the wealth in the hands of about 20% of the people.2

The figures 80 and 20 are illustrative; the Pareto Principle illustrates the lack of symmetry that often appears between work put in and results achieved. For example, 13% of work could generate 87% of returns. Or 70% of problems could be resolved by dealing with 30% of the causes. The sum of the two numbers does not need to add up to 100 all the time.

The following conclusions are illustrative of potential Pareto outcomes2:

  • 80% of customer complaints arise from 20% of your products or services.
  • 80% of delays in schedule arise from 20% of the possible causes of the delays.
  • 20% of your products or services account for 80% of your profit.
  • 20% of your sales-force produces 80% of your company revenues.
  • 20% of a system’s defects cause 80% of its problems.
read more

Fast Facts

While African insurance premiums have been growing they have not kept up with GDP growth

While African insurance premiums have been growing they have not kept up with GDP growth

The African insurance industry is predominantly group life insurance business, and due to limited spending power there has been much slower uptake of individual insurance policies.
Poverty has been reduced somewhat in Africa but this is primarily in the lowest income bracket of the middle class who are prone to falling back into poverty.
Furthermore, policyholders are typically unaware or sceptical of the benefits of owning insurance products, they are difficult to reach and often do not earn regular incomes.1
Microinsurance products are growing more quickly – this presents an opportunity for targetting lower income groups.

read more

Selected News

Quote: Andrej Karpathy – Ex-OpenAI, Ex-Tesla AI

Quote: Andrej Karpathy – Ex-OpenAI, Ex-Tesla AI

“I feel like the [ AI ] problems are tractable, they’re surmountable, but they’re still difficult. If I just average it out, it just feels like a decade [ to AGI ] to me.” – Andrej Karpathy – Ex-OpenAI, Ex-Tesla AI

Andrej Karpathy’s reflection—“I feel like the [ AI ] problems are tractable, they’re surmountable, but they’re still difficult. If I just average it out, it just feels like a decade [ to AGI ] to me.”—encapsulates both a grounded optimism and a caution honed through years at the forefront of artificial intelligence research. Understanding this statement requires context about the speaker, the evolution of the field, and the intellectual landscape that shapes contemporary thinking on artificial general intelligence (AGI).

Andrej Karpathy: Technical Leadership and Shaping AI’s Trajectory

Karpathy is recognised as one of the most influential figures in modern AI. With a doctorate under Geoffrey Hinton, the so-called “godfather” of deep learning, Karpathy’s early career put him at the confluence of academic breakthroughs and industrial deployment. At Stanford, he helped launch the seminal CS231n course, which became a training ground for a generation of practitioners. He subsequently led critical efforts at OpenAI and Tesla, where he served as Director of AI, architecting large-scale deep learning systems for both language and autonomous driving.

From the earliest days of deep learning, Karpathy has witnessed—and helped drive—several “seismic shifts” that have periodically redefined the field. He recalls, for example, the transition from neural networks being considered a niche topic to their explosive relevance with the advent of AlexNet. At OpenAI, he observed the limitations of reinforcement learning when applied too soon to general agent-building and became an early proponent of focusing on practical, useful systems rather than chasing abstract analogies with biological evolution.

Karpathy’s approach is self-consciously pragmatic. He discounts analogies between AI and animal evolution, preferring to frame current efforts as “summoning ghosts,” i.e., building digital entities trained by imitation, not evolved intelligence. His career has taught him to discount industry hype cycles and focus on the “march of nines”—the painstaking work required to close the gap between impressive demos and robust, trustworthy products. This stance runs through his entire philosophy on AI progress.

Context for the Quote: Realism amidst Exponential Hype

The statement about AGI’s timeline emerges from Karpathy’s nuanced position between the extremes of utopian accelerationism and excessive scepticism. Against a backdrop of industry figures claiming near-term transformative breakthroughs, Karpathy advocates for a middle path: current models represent significant progress, but numerous “cognitive deficits” persist. Key limitations include the lack of robust continual learning, difficulties generalising out-of-distribution, and the absence of key memory and reasoning capabilities seen in human intelligence.

Karpathy classifies present-day AI systems as “competent, but not yet capable agents”—useful in narrow domains, such as code generation, but unable to function autonomously in open-ended, real-world contexts. He highlights how models exhibit an uncanny ability to memorise, yet often lack the generalisation skills required for truly adaptive behaviour; they’re powerful, but brittle. The hard problems left are not insurmountable, but solving them—including integrating richer memory, developing agency, and building reliable, context-sensitive learning—will take sustained, multi-year effort.

AGI and the Broader Field: Dialogue with Leading Theorists

Karpathy’s thinking exists in dialogue with several foundational theorists:

  • Geoffrey Hinton: Pioneered deep learning and neural network approaches that underlie all current large-scale AI. His early conviction in neural networks, once seen as fringe, is now mainstream, but Hinton remains open to new architectural breakthroughs.

  • Richard Sutton: A major proponent of reinforcement learning as a route to general intelligence. Sutton’s vision focuses on “building animals”—systems capable of learning from scratch via trial and error in complex environments—whereas Karpathy now sees this as less immediately relevant than imitation-based, practically grounded approaches.

  • Yann LeCun: Another deep learning pioneer, LeCun has championed the continuous push toward self-supervised learning and innovations within model architecture.

  • The Scaling Optimists: The school of thought, including some in the OpenAI and DeepMind circles, who argue that simply increasing model size and data, within current paradigms, will inexorably deliver AGI. Karpathy explicitly distances himself from this view, arguing for the necessity of algorithmic innovation and socio-technical integration.

Karpathy sees the arc of AI progress as analogous to general trends in automation and computing: exponential in aggregate, but marked by periods of over-prediction, gradual integration, and non-linear deployment. He draws lessons from the slow maturation of self-driving cars—a field he led at Tesla—where early demos quickly gave way to years of incremental improvement, ironing out “the last nines” to reach real-world reliability.

He also foregrounds the human side of the equation: as AI’s technical capability increases, the question becomes as much about organisational integration, legal and social adaptation, as it does about raw model performance.

In Summary: Surmountable Yet Difficult

Karpathy’s “decade to AGI” estimate is anchored in a sober appreciation of both technical tractability and practical difficulty. He is neither pessimistic nor a hype-driven optimist. Instead, he projects that AGI—defined as machines able to deliver the full spectrum of knowledge work at human levels—will require another decade of systematic progress spanning model architecture, algorithmic innovation, memory, continual learning, and above all, integration with the complex realities of the real world.

His perspective stands out for its blend of technical rigour, historical awareness, and humility in the face of both engineering constraints and the unpredictability of broader socio-technical systems. In this, Karpathy situates himself in conversation with a lineage of thinkers who have repeatedly recalibrated the AI field’s ambitions—and whose own varied predictions continue to shape the ongoing march toward general intelligence.

read more

Polls

No Results Found

The page you requested could not be found. Try refining your search, or use the navigation above to locate the post.

Services

Global Advisors is different

We help clients to measurably improve strategic decision-making and the results they achieve through defining clearly prioritised choices, reducing uncertainty, winning hearts and minds and partnering to deliver.

Our difference is embodied in our team. Our values define us.

Corporate portfolio strategy

Define optimal business portfolios aligned with investor expectations

BUSINESS UNIT STRATEGY

Define how to win against competitors

Reach full potential

Understand your business’ core, reach full potential and grow into optimal adjacencies

Deal advisory

M&A, due diligence, deal structuring, balance sheet optimisation

Global Advisors Digital Data Analytics

14 years of quantitative and data science experience

An enabler to delivering quantified strategy and accelerated implementation

Digital enablement, acceleration and data science

Leading-edge data science and digital skills

Experts in large data processing, analytics and data visualisation

Developers of digital proof-of-concepts

An accelerator for Global Advisors and our clients

Join Global Advisors

We hire and grow amazing people

Consultants join our firm based on a fit with our values, culture and vision. They believe in and are excited by our differentiated approach. They realise that working on our clients’ most important projects is a privilege. While the problems we solve are strategic to clients, consultants recognise that solutions primarily require hard work – rigorous and thorough analysis, partnering with client team members to overcome political and emotional obstacles, and a large investment in knowledge development and self-growth.

Get In Touch

16th Floor, The Forum, 2 Maude Street, Sandton, Johannesburg, South Africa
+27114616371

Global Advisors | Quantified Strategy Consulting