Select Page

ARTIFICIAL INTELLIGENCE

An AI-native strategy firm

Global Advisors: a consulting leader in defining quantified strategy, decreasing uncertainty, improving decisions, achieving measureable results.

Learn MoreGlobal Advisors AI

A Different Kind of Partner in an AI World

AI-native strategy
consulting

Experienced hires

We are hiring experienced top-tier strategy consultants

Quantified Strategy

Decreased uncertainty, improved decisions

Global Advisors is a leader in defining quantified strategies, decreasing uncertainty, improving decisions and achieving measureable results.

We specialise in providing highly-analytical data-driven recommendations in the face of significant uncertainty.

We utilise advanced predictive analytics to build robust strategies and enable our clients to make calculated decisions.

We support implementation of adaptive capability and capacity.

Our latest

Thoughts

Podcast – The Real AI Signal from Davos 2026

Podcast – The Real AI Signal from Davos 2026

While the headlines from Davos were dominated by geopolitical conflict and debates on AGI timelines and asset bubbles, a different signal emerged from the noise. It wasn’t about if AI works, but how it is being ruthlessly integrated into the real economy.

In our latest podcast, we break down the “Diffusion Strategy” defining 2026.

3 Key Takeaways:

  1. China and the “Global South” are trying to leapfrog: While the West debates regulation, emerging economies are treating AI as essential infrastructure.
    • China has set a goal for 70% AI diffusion by 2027.
    • The UAE has mandated AI literacy in public schools from K-12.
    • Rwanda is using AI to quadruple its healthcare workforce.
  2. The Rise of the “Agentic Self”: We aren’t just using chatbots anymore; we are employing agents. Entrepreneur Steven Bartlett revealed he has established a “Head of Experimentation and Failure” to use AI to disrupt his own business before competitors do. Musician will.i.am argued that in an age of predictive machines, humans must cultivate their “agentic self” to handle the predictable, while remaining unpredictable themselves.
  3. Rewiring the Core: Uber’s CEO Dara Khosrowshahi noted the difference between an “AI veneer” and a fundamental rewire. It’s no longer about summarising meetings; it’s about autonomous agents resolving customer issues without scripts.

The Global Advisors Perspective: Don’t wait for AGI. The current generation of models is sufficient to drive massive value today. The winners will be those who control their “sovereign capabilities” – embedding their tacit knowledge into models they own.

Read our original perspective here – https://with.ga/w1bd5

Listen to the full breakdown here – https://with.ga/2vg0z
While the headlines from Davos were dominated by geopolitical conflict and debates on AGI timelines and asset bubbles, a different signal emerged from the noise. It wasn't about if AI works, but how it is being ruthlessly integrated into the real economy.

read more

Strategy Tools

Fast Facts

Fast Fact: Great returns aren’t enough

Fast Fact: Great returns aren’t enough

Key insights

It’s not enough to just have great returns – top-line growth is just as critical.

In fact, S&P 500 investors rewarded high-growth companies more than high-ROIC companies over the past decade.

While the distinction was less clear on the JSE, what is clear is that getting a balance of growth and returns is critical.

Strong and consistent ROIC or RONA performers provide investors with a steady flow of discounted cash flows – without growth effectively a fixed-income instrument.

Improvements in ROIC through margin improvements, efficiencies and working-capital optimisation provide point-in-time uplifts to share price.

Top-line growth presents a compounding mechanism – ROIC (and improvements) are compounded each year leading to on-going increases in share price.

However, without acceptable levels of ROIC, the benefits of compounding will be subdued and share price appreciation will be depressed – and when ROIC is below WACC value will be destroyed.

Maintaining high levels of growth is not as sustainable as maintaining high levels of ROIC – while both typically decline as industries mature, growth is usually more affected.

Getting the right balance between ROIC and growth is critical to optimising shareholder value.

read more

Selected News

Term: Synthetic data

Term: Synthetic data

“Synthetic data is artificially generated information that computationally or algorithmically mimics the statistical properties, patterns, and structure of real-world data without containing any actual observations or sensitive personal details.” – Synthetic data

What is Synthetic Data?

Synthetic data is artificially generated information that computationally or algorithmically mimics the statistical properties, patterns, and structure of real-world data without containing any actual observations or sensitive personal details. It is created using advanced generative AI models or statistical methods trained on real datasets, producing new records that are statistically identical to the originals but free from personally identifiable information (PII).

This approach enables privacy-preserving data use for analytics, AI training, software testing, and research, addressing challenges like data scarcity, high costs, and compliance with regulations such as GDPR.

Key Characteristics and Generation Methods

  • Privacy Protection: No one-to-one relationships exist between synthetic records and real individuals, eliminating re-identification risks.1,3
  • Utility Preservation: Retains correlations, distributions, and insights from source data, serving as a perfect proxy for real datasets.1,2
  • Flexibility: Easily modifiable for bias correction, scaling, or scenario testing without compliance issues.1

Synthetic data is generated through methods including:

  • Statistical Distribution: Analysing real data to identify distributions (e.g., normal or exponential) and sampling new data from them.4
  • Model-Based: Training machine learning models, such as generative adversarial networks (GANs), to replicate data characteristics.1,4
  • Simulation: Using computer models for domains like physical simulations or AI environments.7

Types of Synthetic Data

Type Description
Fully Synthetic Entirely new data with no real-world elements, matching statistical properties.4,5
Partially Synthetic Sensitive parts of real data replaced, rest unchanged.5
Hybrid Real data augmented with synthetic records.5

Applications and Benefits

  • AI and Machine Learning: Trains models efficiently when real data is scarce or sensitive, accelerating development in fields like autonomous systems and medical imaging.2,7
  • Software Testing: Simulates user behaviour and edge cases without real data risks.2
  • Data Sharing: Enables collaboration while complying with privacy laws; Gartner predicts most AI data will be synthetic by 2030.1

Best Related Strategy Theorist: Kalyan Veeramachaneni

Kalyan Veeramachaneni, a principal research scientist at MIT’s Schwarzman College of Computing, is a leading figure in synthetic data strategies, particularly for scalable, privacy-focused data generation in AI.

Born in India, Veeramachaneni earned his PhD in computer science from the University of Mainz, Germany, focusing on machine learning and data privacy. He joined MIT in 2011 after postdoctoral work at the University of Illinois. His research bridges AI, data science, and privacy engineering, pioneering automated machine learning (AutoML) and synthetic data techniques.

Veeramachaneni’s relationship to synthetic data stems from his development of generative models that create datasets with identical mathematical properties to real ones, adding ‘noise’ to mask originals. This innovation, detailed in MIT Sloan publications, supports competitive advantages through secure data sharing and algorithm development. His work has influenced enterprise AI strategies, emphasising synthetic data’s role in overcoming real-data limitations while preserving utility.

References

1. https://mostly.ai/synthetic-data-basics

2. https://accelario.com/glossary/synthetic-data/

3. https://mitsloan.mit.edu/ideas-made-to-matter/what-synthetic-data-and-how-can-it-help-you-competitively

4. https://aws.amazon.com/what-is/synthetic-data/

5. https://www.salesforce.com/data/synthetic-data/

6. https://tdwi.org/pages/glossary/synthetic-data.aspx

7. https://en.wikipedia.org/wiki/Synthetic_data

8. https://www.ibm.com/think/topics/synthetic-data

9. https://www.urban.org/sites/default/files/2023-01/Understanding%20Synthetic%20Data.pdf

"Synthetic data is artificially generated information that computationally or algorithmically mimics the statistical properties, patterns, and structure of real-world data without containing any actual observations or sensitive personal details." - Term: Synthetic data

read more

Polls

Services

Global Advisors is different

We help clients to measurably improve strategic decision-making and the results they achieve through defining clearly prioritised choices, reducing uncertainty, winning hearts and minds and partnering to deliver.

Our difference is embodied in our team. Our values define us.

Corporate portfolio strategy

Define optimal business portfolios aligned with investor expectations

BUSINESS UNIT STRATEGY

Define how to win against competitors

Reach full potential

Understand your business’ core, reach full potential and grow into optimal adjacencies

Deal advisory

M&A, due diligence, deal structuring, balance sheet optimisation

Global Advisors Digital Data Analytics

14 years of quantitative and data science experience

An enabler to delivering quantified strategy and accelerated implementation

Digital enablement, acceleration and data science

Leading-edge data science and digital skills

Experts in large data processing, analytics and data visualisation

Developers of digital proof-of-concepts

An accelerator for Global Advisors and our clients

Join Global Advisors

We hire and grow amazing people

Consultants join our firm based on a fit with our values, culture and vision. They believe in and are excited by our differentiated approach. They realise that working on our clients’ most important projects is a privilege. While the problems we solve are strategic to clients, consultants recognise that solutions primarily require hard work – rigorous and thorough analysis, partnering with client team members to overcome political and emotional obstacles, and a large investment in knowledge development and self-growth.

Get In Touch

16th Floor, The Forum, 2 Maude Street, Sandton, Johannesburg, South Africa
+27114616371

Global Advisors | Quantified Strategy Consulting