Select Page

28 Jan 2026 | 0 comments

"My main message here is the following: this is a tsunami hitting the labour market, and even in the best-prepared countries, I don't think we are prepared enough." - Kristalina Georgieva - Managing Director, IMF

“My main message here is the following: this is a tsunami hitting the labour market, and even in the best-prepared countries, I don’t think we are prepared enough.” – Kristalina Georgieva – Managing Director, IMF

Kristalina Georgieva’s invocation of a “tsunami” represents far more than rhetorical flourish. Speaking at the World Economic Forum in Davos, the Managing Director of the International Monetary Fund articulated a diagnosis grounded in rigorous empirical analysis: artificial intelligence is not a speculative future threat but an immediate force already reshaping employment across every economy on earth. The metaphor itself carries profound significance-a tsunami denotes not merely disruption but overwhelming force, simultaneity, and inevitability. Critically, Georgieva’s acknowledgement that even “best-prepared countries” remain inadequately equipped reveals the unprecedented scale and speed of this transformation.

The Scope of AI’s Labour Market Impact

The International Monetary Fund’s assessment provides quantifiable dimensions to this disruption. Georgieva’s research indicates that 40 per cent of jobs globally will be impacted by artificial intelligence, with each affected role falling into one of three categories: enhancement (where AI augments human capability), elimination (where automation replaces human labour), or transformation (where roles are fundamentally altered). In advanced economies, this figure rises to 60 per cent-a staggering proportion that underscores the concentration of AI disruption in wealthy nations with greater technological infrastructure.

The distinction between jobs “touched” by AI and jobs eliminated proves crucial to understanding Georgieva’s analysis. Enhancement and transformation may appear preferable to outright elimination, yet they still demand worker adjustment, skill development, and potentially geographic mobility. A job that is transformed but offers no wage improvement-as Georgieva has noted-may be economically worse for the worker even if technically retained. This nuance separates her analysis from both techno-optimist narratives and catastrophic predictions.

Perhaps most concerning is the asymmetric impact across age cohorts and development levels. Georgieva has specifically warned that AI is “like a tsunami hitting the labour market” for younger people entering the workforce. Entry-level positions-historically the gateway through which workers develop skills, build experience, and establish career trajectories-are precisely those most vulnerable to automation. This threatens to disrupt the intergenerational transmission of economic opportunity that has underpinned social mobility for decades.

Theoretical Foundations: The Labour Economics Lineage

Georgieva’s analysis draws on decades of rigorous labour economics scholarship examining technological displacement and labour market adjustment. The intellectual lineage traces to David Autor, a leading MIT economist whose research has fundamentally shaped contemporary understanding of how technological change reshapes employment. Autor’s seminal work demonstrates that whilst technology eliminates routine tasks-particularly routine cognitive work-it simultaneously creates demand for new skills and complementary labour. However, this adjustment is neither automatic nor painless; workers displaced from routine cognitive tasks often face years of unemployment or underemployment before transitioning to new roles, if they transition at all.

Autor’s research, conducted over more than two decades, reveals a critical pattern: technological disruption creates a “hollowing out” of middle-skill employment. Routine cognitive tasks-data entry, basic accounting, straightforward analysis-have been progressively automated, whilst demand has polarised toward high-skill, high-wage positions and low-skill, low-wage service roles. This pattern, documented extensively in his work on computerisation and wage inequality, provides the empirical foundation for understanding why Georgieva emphasises that AI’s impact cannot be left to market forces alone.

Building on Autor’s framework, contemporary labour economists have extended analysis to examine the speed and scale of technological transition. The consensus among leading researchers-including Daron Acemoglu of MIT, who has written extensively on the relationship between technology and inequality-is that rapid technological change without deliberate policy intervention tends to exacerbate inequality rather than distribute gains broadly. Acemoglu’s work emphasises that technology is not destiny; rather, the distributional outcomes of technological change depend fundamentally on institutional choices, regulatory frameworks, and investment in human capital.

Claudia Goldin, the 2023 Nobel Prize winner in Economics, has contributed essential research on the relationship between education, skills, and labour market outcomes across generations. Her historical analysis demonstrates that periods of rapid technological change have previously required corresponding investments in education and skills development. The gap between technological capability and educational preparedness has historically determined whether technological transitions benefit broad populations or concentrate gains among a narrow elite. Georgieva’s warning about inadequate preparedness echoes Goldin’s historical findings: without deliberate educational investment, technological transitions produce inequality.

The Productivity Paradox and Global Growth

Georgieva’s analysis situates AI within a broader economic context of disappointing productivity growth. Global growth has remained underwhelming in recent years, with productivity growth stagnant except in the United States. This stagnation represents a fundamental economic problem: without productivity growth, living standards stagnate, and governments face fiscal pressures as tax revenues fail to grow with economic output.

AI represents, in Georgieva’s assessment, the most potent force for reversing this trend. The IMF calculates that AI could boost global growth between 0.1 and 0.8 per cent annually-a seemingly modest range that carries enormous consequences. A 0.8 per cent productivity gain would restore growth to pre-pandemic levels, fundamentally altering global economic trajectories. Yet this upside scenario depends entirely on successful labour market adjustment and equitable distribution of AI’s benefits. If AI generates productivity gains that concentrate wealth whilst displacing workers without adequate transition support, the aggregate growth figures mask profound distributional consequences.

This productivity question connects directly to Georgieva’s warning about preparedness. The IMF’s research indicates that one in ten jobs in advanced economies already require substantially new skills-a figure that will accelerate as AI deployment expands. Yet educational and training systems globally remain poorly aligned with AI-era skill demands. Northern European countries-particularly Finland, Sweden, and Denmark-have historically invested in continuous skills development and educational flexibility, positioning their workforces better for technological transition. Most other nations, by contrast, maintain educational systems designed for industrial-era employment patterns, where workers acquired specific skills early in their careers and applied them throughout working lives.

The Global Inequality Dimension

Perhaps the most consequential aspect of Georgieva’s analysis concerns the “accordion of opportunities”-her term for the diverging economic trajectories between advanced and developing economies. The 60 per cent figure for advanced economies versus 20-26 per cent for low-income countries reflects not merely different levels of AI adoption but fundamentally different economic capacities and institutional frameworks.

Advanced economies possess the infrastructure, capital, and institutional capacity to invest in AI whilst simultaneously managing labour market transition. They have educational systems capable of rapid adaptation, financial resources to fund reskilling programmes, and social safety nets to cushion displacement. Low-income countries risk being left behind-neither benefiting from AI’s productivity gains nor receiving the investment in skills and social protection that might cushion displacement. This dynamic threatens to widen the global inequality gap that has been a persistent feature of economic development since the industrial revolution.

Georgieva’s concern reflects research by economists including Branko Milanovic, who has documented how technological change interacts with global inequality. Milanovic’s work demonstrates that technological transitions have historically benefited capital owners and high-skill workers whilst displacing lower-skill workers. Without deliberate policy intervention-progressive taxation, investment in education, social protection-technological change tends to increase inequality both within and between nations.

The Skills Gap and Educational Mismatch

Georgieva’s analysis reveals a critical finding: some countries have more demand for new skills than supply, whilst others have more supply than demand. This mismatch is not random; it reflects decades of educational investment decisions. Northern European countries, which have invested continuously in education and skills development, face less severe skills gaps. Emerging market and developing economies, which have often prioritised other investments, face more significant misalignment between labour supply and employer demand.

The nature of required skills further complicates adjustment. Approximately half of new skills demanded are information technology related-programming, data analysis, AI system management. The remaining skills span management, specific professional qualifications, and crucially, what Georgieva terms “learning how to learn.” This last category proves essential because, as she emphasises, policymakers cannot assume they know what jobs of tomorrow will be. Rather than teaching particular knowledge, educational systems must cultivate adaptability and continuous learning capacity.

This pedagogical insight reflects research by Erik Brynjolfsson and Andrew McAfee, economists at MIT who have extensively studied the relationship between technological change and employment. Their research emphasises that in periods of rapid technological change, the ability to learn new skills matters more than possession of specific technical knowledge. Workers who can adapt, learn new tools, and transfer skills across domains fare better than those with deep expertise in narrow domains vulnerable to automation.

The Entry-Level Jobs Crisis

Georgieva’s specific warning about entry-level positions deserves particular attention. AI tends to eliminate entry-level functions-the positions through which younger workers historically entered labour markets, developed experience, and progressed to more senior roles. This threatens to disrupt a fundamental mechanism of economic mobility and skills development.

The concern extends beyond immediate employment. Entry-level positions serve crucial functions beyond income generation: they provide work experience, develop professional networks, teach workplace norms and expectations, and signal to employers that workers possess basic competence. When AI eliminates these positions, younger workers face not merely reduced job availability but disrupted pathways to career development. A 25-year-old unable to secure entry-level experience faces substantially different career prospects than one who progresses through conventional career ladders.

Yet Georgieva’s data also offers grounds for cautious optimism. Her research indicates that a 1 per cent increase in new skills leads to 1.3 per cent increase in overall employment. This suggests that skill development creates positive spillovers-workers with new skills generate demand for complementary services and lower-skilled labour, expanding employment opportunities across the economy. The fear that AI will shrink total employment, whilst understandable, is not yet supported by empirical evidence. Rather, the challenge is reshaping employment-ensuring that displaced workers can transition to new roles and that new opportunities emerge in sufficient quantity and geographic proximity to displaced workers.

Geopolitical and Strategic Dimensions

Georgieva’s warning arrives amid broader economic fragmentation. Trade tensions, geopolitical competition, and the shift from a rules-based global economic order toward competing blocs create additional uncertainty. AI development is increasingly intertwined with strategic competition between major powers, particularly between the United States and China. This geopolitical dimension means that AI’s labour market impact cannot be separated from questions of technological sovereignty, supply chain resilience, and economic security.

The strategic competition over AI development creates perverse incentives. Nations may prioritise rapid AI deployment to maintain competitive advantage, even when labour market adjustment remains incomplete. This dynamic could accelerate job displacement without corresponding investment in worker transition support, exacerbating the preparedness gap Georgieva identifies.

Policy Imperatives and the Preparedness Challenge

Georgieva’s analysis suggests several imperatives for policymakers. First, labour market adjustment cannot be left to market forces alone; deliberate investment in education, training, and social protection is essential. Second, the distribution of AI’s benefits matters as much as aggregate productivity gains; without attention to equity, AI could deepen inequality within and between nations. Third, regulation and ethical frameworks must be established proactively rather than reactively, shaping AI development toward socially beneficial outcomes.

The preparedness challenge Georgieva emphasises reflects a fundamental asymmetry: AI development proceeds at technological pace, whilst educational systems, labour market institutions, and policy frameworks change at institutional pace. Educational systems require years to redesign curricula, train teachers, and produce graduates with new skills. Labour market institutions-unemployment insurance systems, pension arrangements, occupational licensing frameworks-were designed for industrial-era employment patterns and adapt slowly to new realities. Policy frameworks require legislative action, which moves even more slowly.

This temporal mismatch between technological change and institutional adaptation explains why even well-prepared countries remain inadequately equipped. Finland, Sweden, and Denmark-the countries Georgieva identifies as best positioned-have invested continuously in education and skills development, yet even these nations acknowledge that current preparedness remains insufficient for the scale and speed of AI-driven change.

The Broader Economic Context

Georgieva’s warning must be understood within the context of her broader economic outlook. The IMF has upgraded global growth projections to 3.3 per cent for 2026 and 3.2 per cent for 2027, yet these figures fall short of pre-pandemic historical averages of 3.8 per cent. The primary constraint on growth is productivity-the output generated per unit of labour and capital. Without productivity growth, economies cannot generate sufficient income growth to fund public services, support ageing populations, or improve living standards.

AI represents the most significant potential source of productivity growth available to policymakers. Yet realising this potential requires not merely deploying AI technology but managing the labour market transition it necessitates. Georgieva’s warning that even best-prepared countries remain inadequately equipped reflects recognition that the challenge is not technological but institutional and political-whether societies can muster the will to invest in worker transition, education, and social protection whilst simultaneously deploying transformative technology.

The stakes could hardly be higher. Successful management of AI’s labour market impact could restore productivity growth, accelerate global development, and improve living standards broadly. Failure to manage this transition adequately could concentrate AI’s benefits among capital owners and high-skill workers whilst displacing millions of workers without adequate transition support, deepening inequality and potentially destabilising societies. Georgieva’s metaphor of a tsunami captures this duality: the same force that could lift all boats could also devastate those unprepared for its arrival.

 

References

1. https://globaladvisors.biz/2026/01/23/quote-kristalina-georgieva-managing-director-imf/

2. https://www.weforum.org/podcasts/meet-the-leader/episodes/ai-skills-global-economy-imf-kristalina-georgieva/

3. https://fortune.com/2026/01/23/imf-chief-warns-ai-tsunami-entry-level-jobs-gen-z-middle-class/

4. https://timesofindia.indiatimes.com/education/careers/news/ai-is-hitting-entry-level-jobs-like-a-tsunami-imf-chief-kristalina-georgieva-urges-students-to-prepare-for-change/articleshow/127381917.cms

 

Download brochure

Introduction brochure

What we do, case studies and profiles of some of our amazing team.

Download

Our latest podcasts on Spotify
Global Advisors | Quantified Strategy Consulting