Select Page

ARTIFICIAL INTELLIGENCE

An AI-native strategy firm

Global Advisors: a consulting leader in defining quantified strategy, decreasing uncertainty, improving decisions, achieving measureable results.

Learn MoreGlobal Advisors AI

A Different Kind of Partner in an AI World

AI-native strategy
consulting

Experienced hires

We are hiring experienced top-tier strategy consultants

Quantified Strategy

Decreased uncertainty, improved decisions

Global Advisors is a leader in defining quantified strategies, decreasing uncertainty, improving decisions and achieving measureable results.

We specialise in providing highly-analytical data-driven recommendations in the face of significant uncertainty.

We utilise advanced predictive analytics to build robust strategies and enable our clients to make calculated decisions.

We support implementation of adaptive capability and capacity.

Our latest

Thoughts

Global Advisors’ Thoughts: Leading a deliberate life

Global Advisors’ Thoughts: Leading a deliberate life

By Marc Wilson
Marc is a partner at Global Advisors and based in Johannesburg, South Africa

Download this article at https://globaladvisors.biz/blog/2018/06/26/leading-a-deliberate-life/.

Picket fences. Family of four. Management position.

Mid-life crisis. Meaning. Purpose.

Someone once said that, “At 18, I had all the answers. At 35, I realised I didn’t know the question.”

Serendipity has a lot going for it. Many people might sail through life taking what comes and enjoying the moment. Others might be open to chance and have nothing go right for them.

Some people might strive to achieve, realise rare successes and be bitterly unhappy. Others might be driven and enjoy incredible success and fulfilment.

Perhaps the majority of us become beholden to the momentum of our lives.

We might study, start a career, marry, buy a dream house, have children, send them to a top school. Those steps make up components of many of our dreams. They are steps that may define each subsequent choice. As I discussed this with a friend recently, he remarked that few of these steps had been subject of deliberations in his life – increasingly these steps were the outcome of momentum. Each will shape every step he takes for the rest of his life. He would not have things any other way, but if he knew what he knows now, he might have been more deliberate about choice and consequence…..

Read more at https://globaladvisors.biz/blog/2018/06/26/leading-a-deliberate-life/

.

read more

Strategy Tools

PODCAST: Strategy Tools: Growth, Profit or Returns?

PODCAST: Strategy Tools: Growth, Profit or Returns?

Our Spotify podcast explores the relationship between Return on Net Assets (RONA) and growth, arguing that both are essential for shareholder value creation. The hosts contend that focusing solely on one metric can be detrimental, and propose a framework for evaluating business portfolios based on their RONA and growth profiles. This approach involves plotting business units on a “market-cap curve” to identify value-accretive and value-destructive segments.

The podcast also addresses the impact of economic downturns on portfolio management, suggesting strategies for both offensive and defensive approaches. The core argument is that companies should aim to achieve a balance between RONA and growth, acknowledging that both are essential for long-term shareholder value creation.

Read more from the original article – https://globaladvisors.biz/2020/08/04/strategy-tools-growth-profit-or-returns/

read more

Fast Facts

Selected News

Term: Gradient descent

Term: Gradient descent

“Gradient descent is a core optimization algorithm in artificial intelligence (AI) and machine learning used to find the optimal parameters for a model by minimizing a cost (or loss) function.” – Gradient descent

Gradient descent is a first-order iterative optimisation algorithm used to minimise a differentiable cost or loss function by adjusting model parameters in the direction of the steepest descent.4,1 It is fundamental in artificial intelligence (AI) and machine learning for training models such as linear regression, neural networks, and logistic regression by finding optimal parameters that reduce prediction errors.2,3

How Gradient Descent Works

The algorithm starts from an initial set of parameters and iteratively updates them using the formula:

?_{new} = ?_{old} - ? ?J(?)

where ? represents the parameters, ? is the learning rate (step size), and ?J(?) is the gradient of the cost function J.4,6 The negative gradient points towards the direction of fastest decrease, analogous to descending a valley by following the steepest downhill path.1,2

Key Components

  • Learning Rate (?): Controls step size. Too small leads to slow convergence; too large may overshoot the minimum.1,2
  • Cost Function: Measures model error, e.g., mean squared error (MSE) for regression.3
  • Gradient: Partial derivatives indicating how to adjust each parameter.4

Types of Gradient Descent

Type Description Advantages
Batch Gradient Descent Uses entire dataset per update. Stable convergence.5
Stochastic Gradient Descent (SGD) Updates per single example. Faster for large data, escapes local minima.3
Mini-Batch Gradient Descent Uses small batches. Balances speed and stability; most common in practice.5

Challenges and Solutions

  • Local Minima: May trap in suboptimal points; SGD helps escape.2
  • Slow Convergence: Addressed by momentum or adaptive rates like Adam.2
  • Learning Rate Sensitivity: Techniques include scheduling or RMSprop.2

Key Theorist: Augustin-Louis Cauchy

Augustin-Louis Cauchy (1789-1857) is the pioneering mathematician behind the gradient descent method, formalising it in 1847 as a technique for minimising functions via iterative steps proportional to the anti-gradient.4 His work laid the foundation for modern optimisation in AI.

Biography

Born in Paris during the French Revolution, Cauchy showed prodigious talent, entering École Centrale du Panthéon in 1802 and École Polytechnique in 1805. He contributed profoundly to analysis, introducing rigorous definitions of limits, convergence, and complex functions. Despite political exiles under Napoleon and later regimes, he produced over 800 papers, influencing fields from elasticity to optics. Cauchy served as a professor at the École Polytechnique and Sorbonne, though his ultramontane Catholic views led to professional conflicts.4

Relationship to Gradient Descent

In his 1847 memoir “Méthode générale pour la résolution des systèmes d’équations simultanées,” Cauchy described an iterative process equivalent to gradient descent: updating variables by subtracting a positive multiple of partial derivatives. This predates widespread use in machine learning by over a century, where it powers backpropagation in neural networks. Unlike later variants, Cauchy’s original focused on continuous optimisation without batching, but its core principle remains unchanged.4

Legacy

Cauchy’s method enabled scalable training of deep learning models, transforming AI from theoretical to practical. Modern enhancements like Adam build directly on his foundational algorithm.2,4

References

1. https://www.geeksforgeeks.org/data-science/what-is-gradient-descent/

2. https://www.datacamp.com/tutorial/tutorial-gradient-descent

3. https://www.geeksforgeeks.org/machine-learning/gradient-descent-algorithm-and-its-variants/

4. https://en.wikipedia.org/wiki/Gradient_descent

5. https://builtin.com/data-science/gradient-descent

6. https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/optimizing-multivariable-functions/a/what-is-gradient-descent

7. https://www.ibm.com/think/topics/gradient-descent

8. https://www.youtube.com/watch?v=i62czvwDlsw

"Gradient descent is a core optimization algorithm in artificial intelligence (AI) and machine learning used to find the optimal parameters for a model by minimizing a cost (or loss) function." - Term: Gradient descent

read more

Polls

No Results Found

The page you requested could not be found. Try refining your search, or use the navigation above to locate the post.

Services

Global Advisors is different

We help clients to measurably improve strategic decision-making and the results they achieve through defining clearly prioritised choices, reducing uncertainty, winning hearts and minds and partnering to deliver.

Our difference is embodied in our team. Our values define us.

Corporate portfolio strategy

Define optimal business portfolios aligned with investor expectations

BUSINESS UNIT STRATEGY

Define how to win against competitors

Reach full potential

Understand your business’ core, reach full potential and grow into optimal adjacencies

Deal advisory

M&A, due diligence, deal structuring, balance sheet optimisation

Global Advisors Digital Data Analytics

14 years of quantitative and data science experience

An enabler to delivering quantified strategy and accelerated implementation

Digital enablement, acceleration and data science

Leading-edge data science and digital skills

Experts in large data processing, analytics and data visualisation

Developers of digital proof-of-concepts

An accelerator for Global Advisors and our clients

Join Global Advisors

We hire and grow amazing people

Consultants join our firm based on a fit with our values, culture and vision. They believe in and are excited by our differentiated approach. They realise that working on our clients’ most important projects is a privilege. While the problems we solve are strategic to clients, consultants recognise that solutions primarily require hard work – rigorous and thorough analysis, partnering with client team members to overcome political and emotional obstacles, and a large investment in knowledge development and self-growth.

Get In Touch

16th Floor, The Forum, 2 Maude Street, Sandton, Johannesburg, South Africa
+27114616371

Global Advisors | Quantified Strategy Consulting