Select Page

ARTIFICIAL INTELLIGENCE

An AI-native strategy firm

Global Advisors: a consulting leader in defining quantified strategy, decreasing uncertainty, improving decisions, achieving measureable results.

Learn MoreGlobal Advisors AI

A Different Kind of Partner in an AI World

AI-native strategy
consulting

Experienced hires

We are hiring experienced top-tier strategy consultants

Quantified Strategy

Decreased uncertainty, improved decisions

Global Advisors is a leader in defining quantified strategies, decreasing uncertainty, improving decisions and achieving measureable results.

We specialise in providing highly-analytical data-driven recommendations in the face of significant uncertainty.

We utilise advanced predictive analytics to build robust strategies and enable our clients to make calculated decisions.

We support implementation of adaptive capability and capacity.

Our latest

Thoughts

Global Advisors’ Thoughts: Leading a deliberate life

Global Advisors’ Thoughts: Leading a deliberate life

By Marc Wilson
Marc is a partner at Global Advisors and based in Johannesburg, South Africa

Download this article at https://globaladvisors.biz/blog/2018/06/26/leading-a-deliberate-life/.

Picket fences. Family of four. Management position.

Mid-life crisis. Meaning. Purpose.

Someone once said that, “At 18, I had all the answers. At 35, I realised I didn’t know the question.”

Serendipity has a lot going for it. Many people might sail through life taking what comes and enjoying the moment. Others might be open to chance and have nothing go right for them.

Some people might strive to achieve, realise rare successes and be bitterly unhappy. Others might be driven and enjoy incredible success and fulfilment.

Perhaps the majority of us become beholden to the momentum of our lives.

We might study, start a career, marry, buy a dream house, have children, send them to a top school. Those steps make up components of many of our dreams. They are steps that may define each subsequent choice. As I discussed this with a friend recently, he remarked that few of these steps had been subject of deliberations in his life – increasingly these steps were the outcome of momentum. Each will shape every step he takes for the rest of his life. He would not have things any other way, but if he knew what he knows now, he might have been more deliberate about choice and consequence…..

Read more at https://globaladvisors.biz/blog/2018/06/26/leading-a-deliberate-life/

.

read more

Strategy Tools

Strategy tools: Effective transfer pricing

Strategy tools: Effective transfer pricing

So much has been written about transfer pricing. Yet it remains a bone of contention in almost every organisation. Transfer pricing is not merely a rational challenge – it often raises the emotions of internal service users and providers who argue regarding scope, quality, price and value.

We have found that effective transfer pricing relies on some fairly simple best practices and critical success factors.

Many organisations recover costs as a regular ‘below-the-line’ deduction from operating division income statements. In our experience, charge out is almost always preferable. This results in internal value judgements and negotiation regarding delivery happening closer to time of use.

Internal prices / cost recovery plays a crucial role within an organisation: it ‘price signals’ to the buyer and the supplier of the service. Buyers make economic use decisions and suppliers make resource and capacity decisions. This fundamental function and consequence governs the optimal implementation of internal pricing / cost recovery.

We have typically seen that the realisation that internal pricing plays this role and the consequences of poor implementation are not well understood.

Results of poor transfer pricing implementation

Sub-optimal economic use decisions

Where costs / prices are higher than they should be, buyers pass this on as an inflated cost to their customers, experience margin squeeze, or utilise less of the service than they might have.
Strategically this can lead to incorrect decisions regarding the provision of services to the market and loss of market share.
Where costs / prices are lower than they should be, this can lead to overuse of a product or service and poor cost recovery from external customers.
Strategically this can result in the over promotion and sales of products and services that are achieving lower margins than thought, or that might even be making losses.

Sub-optimal investment and resourcing decisions

Incorrect pricing can lead to over- or under-investment in capacity and product or service quality. Further, the resourcing decisions will be incorrect should the price signal to the supplier be incorrect.

Political and emotional argument

Where buyers are unable to obtain assurance that an internal price is correct, there is typically resentment regarding the cost of the internal product and service and the sheltered position employees of the internal service provider occupy – in the buyer’s eyes free from commercial pressures.
Buyers and suppliers typically also argue regarding the quality of the service or product relative to the price paid.
Suppliers may react to criticism claiming their product or service is strategic in nature and refute its availability in the external markets.

Poor product / service quality

Poor price signals will result in lack of comparable product and service quality benchmarks. This can result in ‘gold-plating’ or poor-quality product and service provision.

Read more at https://globaladvisors.biz/2021/01/06/strategy-tools-effective-transfer-pricing/

read more

Fast Facts

Selected News

Quote: Satya Nadella – CEO, Microsoft

Quote: Satya Nadella – CEO, Microsoft

“Just imagine if your firm is not able to embed the tacit knowledge of the firm in a set of weights in a model that you control… you’re leaking enterprise value to some model company somewhere.” – Satya Nadella – CEO, Microsoft

Satya Nadella’s assertion about enterprise sovereignty represents a fundamental reorientation in how organisations must think about artificial intelligence strategy. Speaking at the World Economic Forum in Davos in January 2026, the Microsoft CEO articulated a principle that challenges conventional wisdom about data protection and corporate control in the AI age. His argument centres on a deceptively simple but profound distinction: the location of data centres matters far less than the ability of a firm to encode its unique organisational knowledge into AI models it owns and controls.

The Context of Nadella’s Intervention

Nadella’s remarks emerged during a high-profile conversation with Laurence Fink, CEO of BlackRock, at the 56th Annual Meeting of the World Economic Forum. The discussion occurred against a backdrop of mounting concern about whether the artificial intelligence boom represents genuine technological transformation or speculative excess. Nadella framed the stakes explicitly: “For this not to be a bubble, by definition, it requires that the benefits of this are much more evenly spread.” The conversation with Fink, one of the world’s most influential voices on capital allocation and corporate governance, provided a platform for Nadella to articulate what he termed “the topic that’s least talked about, but I feel will be most talked about in this calendar year”-the question of firm sovereignty in an AI-driven economy.

The timing of this intervention proved significant. By early 2026, the initial euphoria surrounding large language models and generative AI had begun to encounter practical constraints. Organisations worldwide were grappling with the challenge of translating AI capabilities into measurable business outcomes. Nadella’s contribution shifted the conversation from infrastructure and model capability to something more fundamental: the strategic imperative of organisational control over AI systems that encode proprietary knowledge.

Understanding Tacit Knowledge and Enterprise Value

Central to Nadella’s argument is the concept of tacit knowledge-the accumulated, often uncodified understanding that emerges from how people work together within an organisation. This includes the informal processes, institutional memory, decision-making heuristics, and domain expertise that distinguish one firm from another. Nadella explained this concept by reference to what firms fundamentally do: “it’s all about the tacit knowledge we have by working as people in various departments and moving paper and information.”

The critical insight is that this tacit knowledge represents genuine competitive advantage. When a firm fails to embed this knowledge into AI models it controls, that advantage leaks away. Instead of strengthening the organisation’s position, the firm becomes dependent on external model providers-what Nadella termed “leaking enterprise value to some model company somewhere.” This dependency creates a structural vulnerability: the organisation’s competitive differentiation becomes hostage to the capabilities and pricing decisions of third-party AI vendors.

Nadella’s framing inverts the conventional hierarchy of concerns about AI governance. Policymakers and corporate security teams have traditionally prioritised data sovereignty-ensuring that sensitive information remains within national or corporate boundaries. Nadella argues this focus misses the more consequential question. The physical location of data centres, he stated bluntly, is “the least important thing.” What matters is whether the firm possesses the capability to translate its distinctive knowledge into proprietary AI models.

The Structural Transformation of Information Flow

Nadella’s argument gains force when situated within his broader analysis of how AI fundamentally restructures organisations. He described AI as creating “a complete inversion of how information is flowing in the organisation.” Traditional corporate hierarchies operate through vertical information flows: data and insights move upward through departments and specialisations, where senior leaders synthesise information and make decisions that cascade downward.

AI disrupts this architecture. When knowledge workers gain access to what Nadella calls “infinite minds”-the ability to tap into vast computational reasoning power-information flows become horizontal and distributed. This flattening of hierarchies creates both opportunity and risk. The opportunity lies in accelerated decision-making and the democratisation of analytical capability. The risk emerges when organisations fail to adapt their structures and processes to this new reality. More critically, if firms cannot embed their distinctive knowledge into models they control, they lose the ability to shape how this new information flow operates within their own context.

This structural transformation explains why Nadella emphasises what he calls “context engineering.” The intelligence layer of any AI system, he argues, “is only as good as the context you give it.” Organisations must learn to feed their proprietary knowledge, decision frameworks, and domain expertise into AI systems in ways that amplify rather than replace human judgment. This requires not merely deploying off-the-shelf models but developing the organisational capability to customise and control AI systems around their specific knowledge base.

The Sovereignty Framework: Beyond Geography

Nadella’s reconceptualisation of sovereignty represents a significant departure from how policymakers and corporate leaders have traditionally understood the term. Geopolitical sovereignty concerns have dominated discussions of AI governance-questions about where data is stored, which country’s regulations apply, and whether foreign entities can access sensitive information. These concerns remain legitimate, but Nadella argues they address a secondary question.

True sovereignty in the AI era, by his analysis, means the ability of a firm to encode its competitive knowledge into models it owns and controls. This requires three elements: first, the technical capability to train and fine-tune AI models on proprietary data; second, the organisational infrastructure to continuously update these models as the firm’s knowledge evolves; and third, the strategic discipline to resist the temptation to outsource these capabilities to external vendors.

The stakes of this sovereignty question extend beyond individual firms. Nadella frames it as a matter of enterprise value creation and preservation. When firms leak their tacit knowledge to external model providers, they simultaneously transfer the economic value that knowledge generates. Over time, this creates a structural advantage for the model companies and a corresponding disadvantage for the organisations that depend on them. The firm becomes a consumer of AI capability rather than a creator of competitive advantage through AI.

The Legitimacy Challenge and Social Permission

Nadella’s argument about enterprise sovereignty connects to a broader concern he articulated about AI’s long-term viability. He warned that “if we are not talking about health outcomes, education outcomes, public sector efficiency, private sector competitiveness, we will quickly lose the social permission to use scarce energy to generate tokens.” This framing introduces a crucial constraint: AI’s continued development and deployment depends on demonstrable benefits that extend beyond technology companies and their shareholders.

The question of firm sovereignty becomes relevant to this legitimacy challenge. If AI benefits concentrate among a small number of model providers whilst other organisations become dependent consumers, the technology risks losing public and political support. Conversely, if firms across the economy develop the capability to embed their knowledge into AI systems they control, the benefits of AI diffuse more broadly. This diffusion becomes the mechanism through which AI maintains its social licence to operate.

Nadella identified “skilling” as the limiting factor in this diffusion process. How broadly people across organisations develop capability in AI determines how quickly benefits spread. This connects directly to the sovereignty question: organisations that develop internal capability to control and customise AI systems create more opportunities for their workforce to develop AI skills. Those that outsource AI to external providers create fewer such opportunities.

Leading Theorists and Intellectual Foundations

Nadella’s argument draws on and extends several streams of organisational and economic theory. The concept of tacit knowledge itself originates in the work of Michael Polanyi, the Hungarian-British polymath who argued in his 1966 work The Tacit Dimension that “we know more than we can tell.” Polanyi distinguished between explicit knowledge-information that can be codified and transmitted-and tacit knowledge, which resides in practice, experience, and embodied understanding. This distinction proved foundational for subsequent research on organisational learning and competitive advantage.

Building on Polanyi’s framework, scholars including David Teece and Ikujiro Nonaka developed theories of how organisations create and leverage knowledge. Teece’s concept of “dynamic capabilities”-the ability of firms to integrate, build, and reconfigure internal and external competencies-directly parallels Nadella’s argument about embedding tacit knowledge into AI models. Nonaka’s research on knowledge creation in Japanese firms emphasised the importance of converting tacit knowledge into explicit forms that can be shared and leveraged across organisations. Nadella’s argument suggests that AI models represent a new mechanism for this conversion: translating tacit organisational knowledge into explicit algorithmic form.

The concept of “firm-specific assets” in strategic management theory also underpins Nadella’s reasoning. Scholars including Edith Penrose and later resource-based theorists argued that competitive advantage derives from assets and capabilities that are difficult to imitate and specific to particular organisations. Nadella extends this logic to the AI era: the ability to embed firm-specific knowledge into proprietary AI models becomes itself a firm-specific asset that generates competitive advantage.

More recently, scholars studying digital transformation and platform economics have grappled with questions of control and dependency. Researchers including Shoshana Zuboff have examined how digital platforms concentrate power and value by controlling the infrastructure through which information flows. Nadella’s argument about enterprise sovereignty can be read as a response to these concerns: organisations must develop the capability to control their own AI infrastructure rather than becoming dependent on platform providers.

The concept of “information asymmetry” from economics also illuminates Nadella’s argument. When firms outsource AI to external providers, they create information asymmetries: the model provider possesses detailed knowledge of how the firm’s data and knowledge are being processed, whilst the firm itself may lack transparency into the model’s decision-making processes. This asymmetry creates both security risks and strategic vulnerability.

Practical Implications and Organisational Change

Nadella’s argument carries significant implications for how organisations should approach AI strategy. Rather than viewing AI primarily as a technology to be purchased from external vendors, firms should conceptualise it as a capability to be developed internally. This requires investment in three areas: technical infrastructure for training and deploying models; talent acquisition and development in machine learning and data science; and organisational redesign to align workflows with how AI systems operate.

The last point proves particularly important. Nadella emphasised that “the mindset we as leaders should have is, we need to think about changing the work-the workflow-with the technology.” This represents a significant departure from how many organisations have approached technology adoption. Rather than fitting new technology into existing workflows, organisations must redesign workflows around how AI operates. This includes flattening information hierarchies, enabling distributed decision-making, and creating feedback loops through which AI systems continuously learn from organisational experience.

Nadella also introduced the concept of a “barbell adoption” strategy. Startups, he noted, adapt easily to AI because they lack legacy systems and established workflows. Large enterprises possess valuable assets and accumulated knowledge but face significant change management challenges. The barbell approach suggests that organisations should pursue both paths simultaneously: experimenting with new AI-native processes whilst carefully managing the transition of legacy systems.

The Measurement Challenge: Tokens per Dollar per Watt

Nadella introduced a novel metric for evaluating AI’s economic impact: “tokens per dollar per watt.” This metric captures the efficiency with which organisations can generate computational reasoning power relative to energy consumption and cost. The metric reflects Nadella’s argument that AI’s economic value depends not on the sophistication of models but on how efficiently organisations can deploy and utilise them.

This metric also connects to the sovereignty question. Organisations that control their own AI infrastructure can optimise this metric for their specific needs. Those dependent on external providers must accept the efficiency parameters those providers establish. Over time, this difference in optimisation capability compounds into significant competitive advantage.

The Broader Economic Transformation

Nadella situated his argument about enterprise sovereignty within a broader analysis of how AI transforms economic structure. He drew parallels to previous technological revolutions, particularly the personal computing era. Steve Jobs famously described the personal computer as a “bicycle for the mind”-a tool that amplified human capability. Bill Gates spoke of “information at your fingertips.” Nadella argues that AI represents these concepts “10x, 100x” more powerful.

However, this amplification of capability only benefits organisations that can control how it operates within their context. When firms outsource AI to external providers, they forfeit the ability to shape how this amplification occurs. They become consumers of capability rather than creators of competitive advantage.

Nadella’s vision of AI diffusion requires what he terms “ubiquitous grids of energy and tokens”-infrastructure that makes AI capability as universally available as electricity. However, this infrastructure alone proves insufficient. Organisations must also develop the internal capability to embed their knowledge into AI systems. Without this capability, even ubiquitous infrastructure benefits only those firms that control the models running on it.

Conclusion: Knowledge as the New Frontier

Nadella’s argument represents a significant reorientation in how organisations should think about AI strategy and competitive advantage. Rather than focusing on data location or infrastructure ownership, firms should prioritise their ability to embed proprietary knowledge into AI models they control. This shift reflects a deeper truth about how AI creates value: not through raw computational power or data volume, but through the ability to translate organisational knowledge into algorithmic form that amplifies human decision-making.

The sovereignty question Nadella articulated-whether firms can embed their tacit knowledge into models they control-will likely prove central to AI strategy for years to come. Organisations that develop this capability will preserve and enhance their competitive advantage. Those that outsource this capability to external providers risk gradually transferring their distinctive knowledge and the value it generates to those providers. In an era when AI increasingly mediates how organisations operate, the ability to control the models that encode organisational knowledge becomes itself a fundamental source of competitive advantage and strategic sovereignty.

References

1. https://www.teamday.ai/ai/satya-nadella-davos-ai-diffusion-larry-fink

2. https://dig.watch/event/world-economic-forum-2026-at-davos/conversation-with-satya-nadella-ceo-of-microsoft

3. https://www.youtube.com/watch?v=zyNWbPBkq6E

4. https://www.youtube.com/watch?v=1co3zt3-r7I

5. https://www.theregister.com/2026/01/21/nadella_ai_sovereignty_wef/

6. https://fortune.com/2026/01/20/is-ai-a-bubble-satya-nadella-microsoft-ceo-new-knowledge-worker-davos-fink/

"Just imagine if your firm is not able to embed the tacit knowledge of the firm in a set of weights in a model that you control... you're leaking enterprise value to some model company somewhere." - Quote: Satya Nadella - CEO, Microsoft

read more

Polls

No Results Found

The page you requested could not be found. Try refining your search, or use the navigation above to locate the post.

Services

Global Advisors is different

We help clients to measurably improve strategic decision-making and the results they achieve through defining clearly prioritised choices, reducing uncertainty, winning hearts and minds and partnering to deliver.

Our difference is embodied in our team. Our values define us.

Corporate portfolio strategy

Define optimal business portfolios aligned with investor expectations

BUSINESS UNIT STRATEGY

Define how to win against competitors

Reach full potential

Understand your business’ core, reach full potential and grow into optimal adjacencies

Deal advisory

M&A, due diligence, deal structuring, balance sheet optimisation

Global Advisors Digital Data Analytics

14 years of quantitative and data science experience

An enabler to delivering quantified strategy and accelerated implementation

Digital enablement, acceleration and data science

Leading-edge data science and digital skills

Experts in large data processing, analytics and data visualisation

Developers of digital proof-of-concepts

An accelerator for Global Advisors and our clients

Join Global Advisors

We hire and grow amazing people

Consultants join our firm based on a fit with our values, culture and vision. They believe in and are excited by our differentiated approach. They realise that working on our clients’ most important projects is a privilege. While the problems we solve are strategic to clients, consultants recognise that solutions primarily require hard work – rigorous and thorough analysis, partnering with client team members to overcome political and emotional obstacles, and a large investment in knowledge development and self-growth.

Get In Touch

16th Floor, The Forum, 2 Maude Street, Sandton, Johannesburg, South Africa
+27114616371

Global Advisors | Quantified Strategy Consulting