ARTIFICIAL INTELLIGENCE
An AI-native strategy firmGlobal Advisors: a consulting leader in defining quantified strategy, decreasing uncertainty, improving decisions, achieving measureable results.
A Different Kind of Partner in an AI World
AI-native strategy
consulting
Experienced hires
We are hiring experienced top-tier strategy consultants
Quantified Strategy
Decreased uncertainty, improved decisions
Global Advisors is a leader in defining quantified strategies, decreasing uncertainty, improving decisions and achieving measureable results.
We specialise in providing highly-analytical data-driven recommendations in the face of significant uncertainty.
We utilise advanced predictive analytics to build robust strategies and enable our clients to make calculated decisions.
We support implementation of adaptive capability and capacity.
Our latest
Thoughts
Global Advisors’ Thoughts: Outperforming through the downturn AND the cost of ignoring full potential
Press drew attention last year to a slew of JSE-listed companies whose share prices had collapsed over the past few years. Some were previous investor darlings. Analysis pointed to a toxic combination of decreasing earnings growth and increased leverage. While this might be a warning to investors of a company in trouble, what fundamentals drive this combination?
In our analysis, company expansion driven by the need to compensate for poor performance in their core business is a typical driver of exactly this outcome.
This article was written in January 2020 but publication was delayed due to the outbreak of Covid-19. Five months after South Africa’s first case, we update our analysis and show that core-based companies outperformed diverse peers by 29% over the period.
Management should always seek to reach full potential in their core business. Attempts to expand should be to a clearly logical set of adjacencies to which they can apply their capabilities using a repeatable business model.
In the article “Steinhoff, Tongaat, Omnia… Here’s the dead giveaway that you should have avoided these companies, says an asset manager,” (Business Insider SA, Jun 11, 2019) Helena Wasserman lists a number of Johannesburg Stock Exchange (JSE) listed shares that have plummeted in recent years.
In many cases these companies’ corresponding sectors have been declining. However, in most of the sectors there is at least one company that has outperformed the rest. What is it about these outperformers that distinguishes them from the rest?
The outperformers have typically shown strong financial performance – be that Growth, ROE, ROA, RONA or Asset Turnover – and varying degrees of leverage. However, performance against these metrics is by no means consistent – see our analysis.
What is consistent is that the outperformers all show clearly delineated core businesses and ongoing growth towards full potential in these businesses alongside growth into clear adjacencies that protect, enhance and leverage the core. In some cases, the core may have been or is currently being redefined, typically through gradual, step-wise extension along logical adjacencies. Redefinition is particularly important in light of the digital transformation seen in many industries. The outperformers are very seldom diversified across unrelated business segments – although isolated examples such as Bidvest clearly exist in other sectors.
Analysis of the over- and underperformers in the sectors highlighted in the article shows that those following a clear core-based strategy have typically outperformed peers through the initial months of the downturn caused by the Covid-19 outbreak.
Strategy Tools
PODCAST: Effective Transfer Pricing
Our Spotify podcast discusses how to get transfer pricing right.
We discuss effective transfer pricing within organizations, highlighting the prevalent challenges and proposing solutions. The core issue is that poorly implemented internal pricing leads to suboptimal economic decisions, resource allocation problems, and interdepartmental conflict. The hosts advocate for market-based pricing over cost recovery, emphasizing the importance of clear price signals for efficient resource allocation and accurate decision-making. They stress the need for service level agreements, fair cost allocation, and a comprehensive process to manage the political and emotional aspects of internal pricing, ultimately aiming for improved organizational performance and profitability. The podcast includes case studies illustrating successful implementations and the authors’ expertise in this field.
Read more from the original article.

Fast Facts
Fast Fact: Great returns aren’t enough
Key insights
It’s not enough to just have great returns – top-line growth is just as critical.
In fact, S&P 500 investors rewarded high-growth companies more than high-ROIC companies over the past decade.
While the distinction was less clear on the JSE, what is clear is that getting a balance of growth and returns is critical.
Strong and consistent ROIC or RONA performers provide investors with a steady flow of discounted cash flows – without growth effectively a fixed-income instrument.
Improvements in ROIC through margin improvements, efficiencies and working-capital optimisation provide point-in-time uplifts to share price.
Top-line growth presents a compounding mechanism – ROIC (and improvements) are compounded each year leading to on-going increases in share price.
However, without acceptable levels of ROIC, the benefits of compounding will be subdued and share price appreciation will be depressed – and when ROIC is below WACC value will be destroyed.
Maintaining high levels of growth is not as sustainable as maintaining high levels of ROIC – while both typically decline as industries mature, growth is usually more affected.
Getting the right balance between ROIC and growth is critical to optimising shareholder value.
Selected News
Quote: Kristalina Georgieva – Managing Director, IMF
“We assess that 40% of jobs globally are going to be impacted by AI over the next couple of years – either enhanced, eliminated, or transformed. In advanced economies, it’s 60%.” – Kristalina Georgieva – Managing Director, IMF
Kristalina Georgieva’s assessment of AI’s labour market impact represents one of the most consequential economic forecasts of our time. Speaking at the World Economic Forum in Davos in January 2026, the Managing Director of the International Monetary Fund articulated a sobering reality: artificial intelligence is not a distant threat but an immediate force already reshaping employment globally. Her invocation of a “tsunami”-a natural disaster of overwhelming force and scale-captures the simultaneity and inevitability of this transformation.
The Scale of Disruption
Georgieva’s figures warrant careful examination. The IMF calculates that 40 per cent of jobs globally will be touched by AI, with each affected role falling into one of three categories: enhancement (where AI augments human capability), elimination (where automation replaces human labour), or transformation (where roles are fundamentally altered without necessarily improving compensation). This is not speculative projection but empirical assessment grounded in IMF research across member economies.
The geographical disparity is striking and consequential. In advanced economies-the United States, Western Europe, Japan, and similar developed nations-the figure reaches 60 per cent. By contrast, in low-income countries, the impact ranges from 20 to 26 per cent. This divergence is not accidental; it reflects the concentration of AI infrastructure, capital investment, and digital integration in wealthy nations. The IMF’s concern, as Georgieva articulated, is what she termed an “accordion of opportunities”-a compression and expansion of economic possibility that varies dramatically by geography and development status.
Understanding the Context: AI as Economic Transformation
Georgieva’s warning must be situated within the broader economic moment of early 2026. The global economy faces simultaneous pressures: geopolitical fragmentation, demographic shifts, climate transition, and technological disruption occurring in parallel. AI is not the sole driver of economic uncertainty, but it is perhaps the most visible and immediate.
The IMF’s analysis distinguishes between AI’s productivity benefits and its labour market risks. Georgieva acknowledged that AI is generating genuine economic gains across sectors-agriculture, healthcare, education, and transport have all experienced productivity enhancements. Translation and interpretation services have been enhanced rather than eliminated; research analysts have found their work augmented by AI tools. Yet these gains are unevenly distributed, and the labour market adjustment required is unprecedented in speed and scale.
The productivity question is central to Georgieva’s economic outlook. Global growth has been underwhelming in recent years, with productivity growth stagnant except in the United States. AI represents the most potent force for reversing this trend, with potential to boost global growth between 0.1 and 0.8 per cent annually. A 0.8 per cent productivity gain would restore growth to pre-pandemic levels. Yet this upside scenario depends entirely on successful labour market adjustment and equitable distribution of AI’s benefits.
The Theoretical Foundations: Labour Economics and Technological Disruption
Georgieva’s analysis draws on decades of labour economics scholarship examining technological displacement. The intellectual lineage traces to economists such as David Autor, who has extensively studied how technological change reshapes labour markets. Autor’s research demonstrates that whilst technology eliminates routine tasks, it simultaneously creates demand for new skills and complementary labour. However, this adjustment is neither automatic nor painless; workers displaced from routine cognitive tasks often face years of unemployment or underemployment before transitioning to new roles.
The “task-based” framework of labour economics-developed by scholars including Autor and Frank Levy-provides the theoretical scaffolding for understanding AI’s impact. Rather than viewing jobs as monolithic units, this approach recognises that occupations comprise multiple tasks. AI may automate certain tasks within a role whilst leaving others intact, fundamentally altering job content and skill requirements. A radiologist’s role, for instance, may be transformed by AI’s superior pattern recognition in image analysis, but the radiologist’s diagnostic judgment, patient communication, and clinical decision-making remain valuable.
Erik Brynjolfsson and Andrew McAfee, prominent technology economists, have argued that AI represents a qualitative shift from previous technological waves. Unlike earlier automation, which primarily affected routine manual labour, AI threatens cognitive work across income levels. Their research suggests that without deliberate policy intervention, AI could exacerbate inequality rather than reduce it, concentrating gains among capital owners and highly skilled workers whilst displacing middle-skill employment.
Daron Acemoglu, the MIT economist, has been particularly critical of “so-so automation”-technology that increases productivity marginally whilst displacing workers without creating sufficient new opportunities. His work emphasises that technological outcomes are not predetermined; they depend on institutional choices, investment priorities, and policy frameworks. This perspective is crucial for understanding Georgieva’s policy recommendations.
The Policy Imperative
Georgieva’s framing of the challenge as a policy problem rather than an inevitable outcome reflects this economic thinking. She has consistently advocated for three policy pillars: investment in skills development, meaningful regulation and ethical frameworks, and ensuring AI’s benefits penetrate across sectors and geographies rather than concentrating in advanced economies.
The IMF’s own research indicates that one in ten jobs in advanced economies already require substantially new skills-a figure that will accelerate. Yet educational and training systems globally remain poorly aligned with AI-era skill demands. Georgieva has urged governments to invest in reskilling programmes, particularly targeting workers in roles most vulnerable to displacement.
Her emphasis on regulation and ethics reflects growing recognition that AI’s trajectory is not technologically determined. The choice between AI as a tool for broad-based productivity enhancement versus a mechanism for labour displacement and inequality concentration remains open. This aligns with the work of scholars such as Shoshana Zuboff, who argues that technological systems embody political choices about power distribution and social organisation.
The Global Inequality Dimension
Perhaps most significant is Georgieva’s concern about the “accordion of opportunities.” The 60 per cent figure for advanced economies versus 20-26 per cent for low-income countries reflects not merely different levels of AI adoption but fundamentally different economic trajectories. Advanced economies possess the infrastructure, capital, and institutional capacity to invest in AI whilst simultaneously managing labour market transition. Low-income countries risk being left behind-neither benefiting from AI’s productivity gains nor receiving the investment in skills and social protection that might cushion displacement.
This concern echoes the work of development economists such as Dani Rodrik, who has documented how technological change can bypass developing economies entirely, leaving them trapped in low-productivity sectors. If AI concentrates in advanced economies and wealthy sectors, developing nations may face a new form of technological colonialism-dependent on imported AI solutions without developing indigenous capacity or capturing value creation.
The Measurement Challenge
Georgieva’s 40 per cent figure, whilst grounded in IMF research, represents a probabilistic assessment rather than a precise prediction. The IMF acknowledges a “fairly big range” of potential impacts on global growth (0.1 to 0.8 per cent), reflecting genuine uncertainty about AI’s trajectory. This uncertainty itself is significant; it suggests that outcomes remain contingent on policy choices, investment decisions, and institutional responses.
The distinction between jobs “touched” by AI and jobs eliminated is crucial. Enhancement and transformation may be preferable to elimination, but they still require worker adjustment, skill development, and potentially geographic mobility. A job that is transformed but offers no wage improvement-as Georgieva noted-may be economically worse for the worker even if technically retained.
The Broader Economic Context
Georgieva’s warning arrives amid broader economic fragmentation. Trade tensions, geopolitical competition, and the shift from a rules-based global economic order toward competing blocs create additional uncertainty. AI development is increasingly intertwined with strategic competition between major powers, particularly between the United States and China. This geopolitical dimension means that AI’s labour market impact cannot be separated from questions of technological sovereignty, supply chain resilience, and economic security.
The IMF chief has also emphasised that AI’s benefits are not automatic. She personally undertook training in AI productivity tools, including Microsoft Copilot, and urged IMF staff to embrace AI-based enhancements. Yet this individual adoption, multiplied across millions of workers and organisations, requires deliberate choice, investment in training, and organisational restructuring. The productivity gains Georgieva projects depend on this active embrace rather than passive exposure to AI technology.
Implications for Policy and Strategy
Georgieva’s analysis suggests several imperatives for policymakers. First, labour market adjustment cannot be left to market forces alone; deliberate investment in education, training, and social protection is essential. Second, the distribution of AI’s benefits matters as much as aggregate productivity gains; without attention to equity, AI could deepen inequality within and between nations. Third, regulation and ethical frameworks must be established proactively rather than reactively, shaping AI development toward socially beneficial outcomes.
Her invocation of a “tsunami” is not mere rhetoric but a precise characterisation of the challenge’s scale and urgency. Tsunamis cannot be prevented, but their impact can be mitigated through preparation, early warning systems, and coordinated response. Similarly, AI’s labour market impact is largely inevitable, but its consequences-whether broadly shared prosperity or concentrated disruption-remain subject to human choice and institutional design.
References
2. https://time.com/collections/davos-2026/7339218/ai-trade-global-economy-kristalina-georgieva-imf/
4. https://www.youtube.com/watch?v=4ANV7yuaTuA
5. https://www.weforum.org/stories/2026/01/live-from-davos-2026-what-to-know-on-day-2/
6. https://www.perplexity.ai/page/ai-impact-on-jobs-debated-as-l-_a7uZvVcQmWh3CsTzWfkbA

Polls
What determines your success?
We need your help!
We’re testing how people think about their successes and failures. It would be great if you would take 2 minutes to give a simple multiple choice answer and share the poll with your friends.
Take the poll – “What determines your success?”
Then read So You Think You’re Self Aware?
Services
Global Advisors is different
We help clients to measurably improve strategic decision-making and the results they achieve through defining clearly prioritised choices, reducing uncertainty, winning hearts and minds and partnering to deliver.
Our difference is embodied in our team. Our values define us.
Corporate portfolio strategy
Define optimal business portfolios aligned with investor expectations
BUSINESS UNIT STRATEGY
Define how to win against competitors
Reach full potential
Understand your business’ core, reach full potential and grow into optimal adjacencies
Deal advisory
M&A, due diligence, deal structuring, balance sheet optimisation
Global Advisors Digital Data Analytics
14 years of quantitative and data science experience
An enabler to delivering quantified strategy and accelerated implementation
Digital enablement, acceleration and data science
Leading-edge data science and digital skills
Experts in large data processing, analytics and data visualisation
Developers of digital proof-of-concepts
An accelerator for Global Advisors and our clients
Join Global Advisors
We hire and grow amazing people
Consultants join our firm based on a fit with our values, culture and vision. They believe in and are excited by our differentiated approach. They realise that working on our clients’ most important projects is a privilege. While the problems we solve are strategic to clients, consultants recognise that solutions primarily require hard work – rigorous and thorough analysis, partnering with client team members to overcome political and emotional obstacles, and a large investment in knowledge development and self-growth.
Get In Touch
16th Floor, The Forum, 2 Maude Street, Sandton, Johannesburg, South Africa
+27114616371
