Select Page

Global Advisors | Quantified Strategy Consulting

Artificial Intelligence
Term: AI slop

Term: AI slop

“AI slop refers to low-quality, mass-produced digital content (text, images, video, audio, workflows, agents, outputs) generated by artificial intelligence, often with little effort or meaning, designed to pass as social media or pass off cognitive load in the workplace.” – AI slop

AI slop refers to low-quality, mass-produced digital content created using generative artificial intelligence that prioritises speed and volume over substance and quality.1 The term encompasses text, images, video, audio, and workplace outputs designed to exploit attention economics on social media platforms or reduce cognitive load in professional environments through minimal-effort automation.2,3 Coined in the 2020s, AI slop has become synonymous with digital clutter-content that lacks originality, depth, and meaningful insight whilst flooding online spaces with generic, unhelpful material.1

Key Characteristics

AI slop exhibits several defining features that distinguish it from intentionally created content:

  • Vague and generalised information: Content remains surface-level, offering perspectives and insights already widely available without adding novel value or depth.2
  • Repetitive structuring and phrasing: AI-generated material follows predictable patterns-rhythmic structures, uniform sentence lengths, and formulaic organisation that create a distinctly robotic quality.2
  • Lack of original insight: The content regurgitates existing information from training data rather than generating new perspectives, opinions, or analysis that differentiate it from competing material.2
  • Neutral corporate tone: AI slop typically employs bland, impersonal language devoid of distinctive brand voice, personality, or strong viewpoints.2
  • Unearned profundity: Serious narrative transitions and rhetorical devices appear without substantive foundation, creating an illusion of depth.6

Origins and Evolution

The term emerged in the early 2020s as large language models and image diffusion models accelerated the creation of high-volume, low-quality content.1 Early discussions on platforms including 4chan, Hacker News, and YouTube employed “slop” as in-group slang to describe AI-generated material, with alternative terms such as “AI garbage,” “AI pollution,” and “AI-generated dross” proposed by journalists and commentators.1 The 2025 Word of the Year designation by both Merriam-Webster and the American Dialect Society formalised the term’s cultural significance.1

Manifestations Across Contexts

Social Media and Content Creation: Creators exploit attention economics by flooding platforms with low-effort content-clickbait articles with misleading titles, shallow blog posts stuffed with keywords for search engine manipulation, and bizarre imagery designed for engagement rather than authenticity.1,4 Examples range from surreal visual combinations (Jesus made of spaghetti, golden retrievers performing surgery) to manipulative videos created during crises to push particular narratives.1,5

Workplace “Workslop”: A Harvard Business Review study conducted with Stanford University and BetterUp found that 40% of participating employees received AI-generated content that appeared substantive but lacked genuine value, with each incident requiring an average of two hours to resolve.1 This workplace variant demonstrates how AI slop extends beyond public-facing content into professional productivity systems.

Societal Impact

AI slop creates several interconnected problems. It displaces higher-quality material that could provide genuine utility, making it harder for original creators to earn citations and audience attention.2 The homogenised nature of mass-produced AI content-where competitors’ material sounds identical-eliminates differentiation and creates forgettable experiences that fail to connect authentically with audiences.2 Search engines increasingly struggle with content quality degradation, whilst platforms face challenges distinguishing intentional human creativity from synthetic filler.3

Mitigation Strategies

Organisations seeking to avoid creating AI slop should employ several practices: develop extremely specific prompts grounded in detailed brand voice guidelines and examples; structure reusable prompts with clear goals and constraints; and maintain rigorous human oversight for fact-checking and accuracy verification.2 The fundamental antidote remains cultivating specificity rooted in particular knowledge, tangible experience, and distinctive perspective.6

Related Theorist: Jonathan Gilmore

Jonathan Gilmore, a philosophy professor at the City University of New York, has emerged as a key intellectual voice in analysing AI slop’s cultural and epistemological implications. Gilmore characterises AI-generated material as possessing an “incredibly banal, realistic style” that is deceptively easy for viewers to process, masking its fundamental lack of substance.1

Gilmore’s contribution to understanding AI slop extends beyond mere description into philosophical territory. His work examines how AI-generated content exploits cognitive biases-our tendency to accept information that appears professionally formatted and realistic, even when it lacks genuine insight or originality. This observation proves particularly significant in an era where visual and textual authenticity no longer correlates reliably with truthfulness or value.

By framing AI slop through a philosophical lens, Gilmore highlights a deeper cultural problem: the erosion of epistemic standards in digital spaces. His analysis suggests that AI slop represents not merely a technical problem requiring better filters, but a fundamental challenge to how societies evaluate knowledge, authenticity, and meaningful communication. Gilmore’s work encourages critical examination of the systems and incentive structures that reward volume and speed over depth and truth-a perspective essential for understanding why AI slop proliferates despite its obvious deficiencies.

References

1. https://en.wikipedia.org/wiki/AI_slop

2. https://www.seo.com/blog/ai-slop/

3. https://www.livescience.com/technology/artificial-intelligence/ai-slop-is-on-the-rise-what-does-it-mean-for-how-we-use-the-internet

4. https://edrm.net/2024/07/the-new-term-slop-joins-spam-in-our-vocabulary/

5. https://www.theringer.com/2025/12/17/pop-culture/ai-slop-meaning-meme-examples-images-word-of-the-year

6. https://www.ignorance.ai/p/the-field-guide-to-ai-slop

read more
Quote: Andrew Ng – AI guru. Coursera founder

Quote: Andrew Ng – AI guru. Coursera founder

“I find that we’ve done this “let a thousand flowers bloom” bottom-up [AI] innovation thing, and for the most part, it’s led to a lot of nice little things but nothing transformative for businesses.” – Andrew Ng – AI guru, Coursera founder

In a candid reflection at the World Economic Forum 2026 session titled ‘Corporate Ladders, AI Reshuffled,’ Andrew Ng critiques the prevailing ‘let a thousand flowers bloom’ approach to AI innovation. He argues that while this bottom-up strategy has produced numerous incremental tools, it falls short of delivering the profound business transformations required in today’s competitive landscape1,3,4. This perspective emerges from Ng’s deep immersion in AI’s evolution, where he observes a landscape brimming with potential yet hampered by fragmented efforts.

Andrew Ng: The Architect of Modern AI Education and Research

Andrew Ng stands as one of the foremost figures in artificial intelligence, often dubbed an ‘AI guru’ for his pioneering contributions. A British-born computer scientist, Ng co-founded Coursera in 2012, revolutionising online education by making high-quality courses accessible worldwide, with a focus on machine learning and AI1,4. Prior to that, he led the Google Brain project from 2011 to 2012, establishing one of the first large-scale deep learning initiatives that laid foundational work for advancements now powering Google DeepMind1.

Today, Ng heads DeepLearning.AI, offering practical AI training programmes, and serves as managing general partner at AI Fund, investing in transformative AI startups. His career also includes professorships at Stanford University and Baidu’s chief scientist role, where he scaled AI applications in China. At Davos 2026, Ng highlighted Google’s resurgence with Gemini 3 while emphasising the ‘white hot’ AI ecosystem’s opportunities for players like Anthropic and OpenAI1. He consistently advocates for upskilling, noting that ‘a person that uses AI will be so much more productive, they will replace someone that doesn’t,’ countering fears of mass job losses with a vision of augmented human capabilities3.

Context of the Quote: Davos 2026 and the Shift from Experimentation to Enterprise Impact

Delivered in January 2026 during a YouTube live session on how AI is reshaping jobs, skills, careers, and workflows, Ng’s remark underscores a pivotal moment in AI adoption[Source]. Amid Davos discussions, he addressed the tension between hype and reality: bottom-up innovation has yielded ‘nice little things’ like chatbots and coding assistants, but businesses crave systemic overhauls in areas such as travel, retail, and domain-specific automation1. Ng points to underinvestment in the application layer, urging a pivot towards targeted, top-down strategies to unlock transformative value-echoing themes of agentic AI, task automation, and workflow integration[TAGS].

This aligns with his broader Davos narrative, including calls for open-source AI to foster sovereignty (as for India) and pragmatic workforce reskilling, where AI handles 30-40% of tasks, leaving humans to manage the rest2,3. The session, part of WEF’s exploration of AI’s role in corporate structures, signals a maturing field moving beyond foundational models to enterprise-grade deployment.

Leading Theorists on AI Innovation Paradigms: From Bottom-Up Bloom to Structured Transformation

Ng’s critique builds on foundational theories of innovation in AI, drawing from pioneers who shaped the debate between decentralised experimentation and directed progress.

  • Yann LeCun, Yoshua Bengio, and Geoffrey Hinton (The Godfathers of Deep Learning): These Turing Award winners ignited the deep learning revolution in the 2010s. Their bottom-up approach-exemplified by convolutional neural networks and backpropagation-mirrored Mao Zedong’s ‘let a thousand flowers bloom’ metaphor, encouraging diverse neural architectures. Yet, as Ng notes, this has led to proliferation without proportional business disruption, prompting calls for vertical integration.
  • Jensen Huang (NVIDIA CEO): Huang’s five-layer AI stack-energy, silicon, cloud, foundational models, applications-provides the theoretical backbone for Ng’s views. He emphasises that true transformation demands investment atop the stack, not just base layers, aligning with Ng’s push beyond ‘nice little things’ to workflow automation5.
  • Fei-Fei Li (Stanford Vision Lab): Ng’s collaborator and ‘Godmother of AI,’ Li advocates human-centred AI, stressing application-layer innovations for real-world impact, such as in healthcare imaging-reinforcing the need for focused enterprise adoption.
  • Demis Hassabis (Google DeepMind): From Ng’s Google Brain era, Hassabis champions unified labs for scalable AI, critiquing siloed efforts in favour of top-down orchestration, much like Ng’s prescription for business transformation.

These theorists collectively highlight a consensus: while bottom-up innovation democratised AI tools, the next phase requires deliberate, top-down engineering to embed AI into core business processes, driving productivity and competitive edges.

Implications for Businesses and the AI Ecosystem

Ng’s insight challenges leaders to reassess AI strategies, prioritising agentic systems that automate tasks and elevate human judgement. As the AI landscape heats up-with models like Gemini 3, Llama-4, and Qwen-2-opportunities abound for those bridging the application gap1,2. This perspective not only contextualises current hype but guides towards sustainable, transformative deployment.

References

1. https://www.moneycontrol.com/news/business/davos-summit/davos-2026-google-s-having-a-moment-but-ai-landscape-is-white-hot-says-andrew-ng-13779205.html

2. https://www.aicerts.ai/news/andrew-ng-open-source-ai-india-call-resonates-at-davos/

3. https://www.storyboard18.com/brand-makers/davos-2026-andrew-ng-says-fears-of-ai-driven-job-losses-are-exaggerated-87874.htm

4. https://www.youtube.com/watch?v=oQ9DTjyfIq8

5. https://globaladvisors.biz/2026/01/23/the-ai-signal-from-the-world-economic-forum-2026-at-davos/

read more
Quote: Andrew Ng – AI guru, Coursera founder

Quote: Andrew Ng – AI guru, Coursera founder

“My most productive developers are actually not fresh college grads; they have 10, 20 years of experience in coding and are on top of AI… one tier down… is the fresh college grads that really know how to use AI… one tier down from that is the people with 10 years of experience… the least productive that I would never hire are the fresh college grads that… do not know AI.” – Andrew Ng – AI guru, Coursera founder

In a candid discussion at the World Economic Forum 2026 in Davos, Andrew Ng unveiled a provocative hierarchy of developer productivity, prioritising AI fluency over traditional experience. Delivered during the session ‘Corporate Ladders, AI Reshuffled,’ this perspective challenges conventional hiring norms amid AI’s rapid evolution. Ng’s remarks, captured in a live YouTube panel on 19 January 2026, underscore how artificial intelligence is redefining competence in software engineering.

Andrew Ng: The Architect of Modern AI Education

Andrew Ng stands as one of the foremost pioneers in artificial intelligence, blending academic rigour with entrepreneurial vision. A British-born computer scientist, he earned his PhD from the University of California, Berkeley, and later joined Stanford University, where he co-founded the Stanford AI Lab. Ng’s breakthrough came with his development of one of the first large-scale online courses on machine learning in 2011, which attracted over 100,000 students and laid the groundwork for massive open online courses (MOOCs).

In 2012, alongside Daphne Koller, he co-founded Coursera, transforming global access to education by partnering with top universities to offer courses in AI, data science, and beyond. The platform now serves millions, democratising skills essential for the AI age. Ng also led Baidu’s AI Group as Chief Scientist from 2014 to 2017, scaling deep learning applications at an industrial level. Today, as founder of DeepLearning.AI and managing general partner at AI Fund, he invests in and educates on practical AI deployment. His influence extends to Google Brain, which he co-founded in 2011, pioneering advancements in deep learning that power today’s generative models.

Ng’s Davos appearances, including 2026 interviews with Moneycontrol and others, consistently advocate for AI optimism tempered by pragmatism. He dismisses fears of an AI bubble in applications while cautioning on model training costs, and stresses upskilling: ‘A person that uses AI will be so much more productive, they will replace someone that doesn’t use AI.’1,3

Context of the Quote: AI’s Disruption of Corporate Ladders

The quote emerged from WEF 2026’s exploration of how AI reshuffles organisational hierarchies and talent pipelines. Ng argued that AI tools amplify human capabilities unevenly, creating a new productivity spectrum. Seasoned coders who master AI-such as large language models for code generation-outpace novices, while AI-illiterate veterans lag. This aligns with his broader Davos narrative: AI handles 30-40% of many jobs’ tasks, leaving humans to focus on the rest, but only if they adapt.3

Ng highlighted real-world shifts in Silicon Valley, where AI inference demand surges, throttling teams due to capacity limits. He urged infrastructure build-out and open-source adoption, particularly for nations like India, warning against vendor lock-in: ‘If it’s open, no one can mess with it.’2 Fears of mass job losses? Overhyped, per Ng-layoffs stem more from post-pandemic corrections than automation.3

Leading Theorists on AI, Skills, and Future Work

Ng’s views echo and extend seminal theories on technological unemployment and skill augmentation.

  • David Autor: MIT economist whose ‘skill-biased technological change’ framework (1990s onwards) posits automation displaces routine tasks but boosts demand for non-routine cognitive skills. Ng’s hierarchy mirrors this: AI supercharges experienced workers’ judgement while sidelining routine coders.3
  • Erik Brynjolfsson and Andrew McAfee: In ‘The Second Machine Age’ (2014), they describe how digital technologies widen productivity gaps, favouring ‘superstars’ who leverage tools. Ng’s top tier-AI-savvy veterans-embodies this ‘winner-takes-more’ dynamic in coding.1
  • Daron Acemoglu and Pascual Restrepo: Their ‘task-based’ model (2010s) quantifies automation’s impact: AI automates coding subtasks, but complements human oversight. Ng’s 30-40% task automation estimate directly invokes this, predicting productivity booms for adapters.3
  • Fei-Fei Li: Ng’s Stanford colleague and ‘Godmother of AI Vision,’ she emphasises human-AI collaboration. Her work on multimodal AI reinforces Ng’s call for developers to integrate AI into workflows, not replace manual toil.
  • Yann LeCun, Geoffrey Hinton, and Yoshua Bengio: The ‘Godfathers of Deep Learning’ (Turing Award 2018) enabled tools like those Ng champions. Their foundational neural network advances underpin modern code assistants, validating Ng’s tiers where AI fluency trumps raw experience.

These theorists collectively frame AI as an amplifier, not annihilator, of labour-resonating with Ng’s prescription for careers: master AI or risk obsolescence. As workflows agenticise, coding evolves from syntax drudgery to strategic orchestration.

Implications for Careers and Skills

Ng’s ladder demands immediate action: prioritise AI literacy via platforms like Coursera, fine-tune open models like Llama-4 or Qwen-2, and rebuild talent pipelines around meta-skills like prompt engineering and bias auditing.2,5 For IT powerhouses like India’s $280 billion services sector, upskilling velocity is non-negotiable.6 In this reshuffled landscape, productivity hinges not on years coded, but on AI mastery.

References

1. https://www.moneycontrol.com/news/business/davos-summit/davos-2026-are-we-in-an-ai-bubble-andrew-ng-says-it-depends-on-where-you-look-13779435.html

2. https://www.aicerts.ai/news/andrew-ng-open-source-ai-india-call-resonates-at-davos/

3. https://www.storyboard18.com/brand-makers/davos-2026-andrew-ng-says-fears-of-ai-driven-job-losses-are-exaggerated-87874.htm

4. https://www.youtube.com/watch?v=oQ9DTjyfIq8

5. https://globaladvisors.biz/2026/01/23/the-ai-signal-from-the-world-economic-forum-2026-at-davos/

6. https://economictimes.com/tech/artificial-intelligence/india-must-speed-up-ai-upskilling-coursera-cofounder-andrew-ng/articleshow/126703083.cms

read more
Quote: Microsoft

Quote: Microsoft

“DeepSeek’s success reflects growing Chinese momentum across Africa, a trend that may continue to accelerate in 2026.” – Microsoft – January 2026

The quote originates from Microsoft’s Global AI Adoption in 2025 report, published by the company’s AI Economy Institute and detailed in a January 2026 blog post on ‘On the Issues’. It highlights the rapid ascent of DeepSeek, a Chinese open-source AI platform, in African markets. Microsoft notes that DeepSeek’s free access and strategic partnerships have driven adoption rates 2 to 4 times higher in Africa than in other regions, positioning it as a key factor in China’s expanding technological influence.4,5

Backstory on the Source: Microsoft’s Perspective

Microsoft, a global technology leader with deep investments in AI through partnerships like OpenAI, tracks worldwide AI diffusion to inform its strategy. The 2025 report analyses user data across countries, revealing how accessibility shapes adoption. While Microsoft acknowledges its stake in broader AI proliferation, the analysis remains data-driven, emphasising DeepSeek’s role in underserved markets without endorsing geopolitical shifts.1,2,4

DeepSeek holds significant market shares in Africa: 16-20% in Ethiopia, Tunisia, Malawi, Zimbabwe, and Madagascar; 11-14% in Uganda and Niger. This contrasts with low uptake in North America and Europe, where Western models dominate.1,2,3

DeepSeek: The Chinese AI Challenger

Founded in 2023, DeepSeek is a Hangzhou-based startup rivalling OpenAI’s ChatGPT with cost-effective, open-source models under an MIT licence. Its free chatbot eliminates barriers like subscription fees or credit cards, appealing to price-sensitive regions. The January 2025 release of its R1 model, praised in Nature as a ‘landmark paper’ co-authored by founder Liang Wenfeng, demonstrated advanced reasoning for math and coding at lower costs.2,4

Strategic distribution via Huawei phones as default chatbots, plus partnerships and telecom integrations, propelled its growth. Adoption peaks in China (89%), Russia (43%), Belarus (56%), Cuba (49%), Iran (25%), and Syria (23%). Microsoft warns this could serve as a ‘geopolitical instrument’ for Chinese influence where US services face restrictions.2,3,4

Broader Implications for Africa and the Global South

Africa’s AI uptake accelerates via free platforms like DeepSeek, potentially onboarding the ‘next billion users’ from the global South. Factors include Huawei’s infrastructure push and awareness campaigns. However, concerns arise over biases, such as restricted political content aligned with Chinese internet access, and security risks prompting bans in the US, Australia, Germany, and even Microsoft internally.1,2

Leading Theorists on AI Geopolitics and Global Adoption

  • Lavista Ferres (Microsoft AI researcher): Leads the lab behind the report. Observes DeepSeek’s technical strengths but notes political divergences, predicting influence on global discourse.2
  • Liang Wenfeng (DeepSeek founder): Drives open-source innovation, authoring peer-reviewed work on efficient AI models that challenge US dominance.2
  • Walid Kéfi (AI commentator): Analyses Africa’s generative AI surge, crediting free platforms for scaling adoption amid infrastructure challenges.1

These insights underscore a pivotal shift: AI’s future hinges on openness and accessibility, reshaping power dynamics between US and Chinese ecosystems.4

References

1. https://www.ecofinagency.com/news/1301-51867-microsoft-study-maps-africa-s-generative-ai-uptake-as-free-platforms-drive-adoption

2. https://abcnews.go.com/Technology/wireStory/deepseeks-ai-gains-traction-developing-nations-microsoft-report-129021507

3. https://www.euronews.com/next/2026/01/09/deepseeks-ai-gains-traction-in-developing-nations-microsoft-report-says

4. https://www.microsoft.com/en-us/corporate-responsibility/topics/ai-economy-institute/reports/global-ai-adoption-2025/

5. https://blogs.microsoft.com/on-the-issues/2026/01/08/global-ai-adoption-in-2025/

6. https://www.cryptopolitan.com/microsoft-says-china-beating-america-in-ai/

“DeepSeek’s success reflects growing Chinese momentum across Africa, a trend that may continue to accelerate in 2026.” - Quote: Microsoft

read more
Quote: Andrew Ng – AI guru, Coursera founder

Quote: Andrew Ng – AI guru, Coursera founder

“I think one of the challenges is, because AI technology is still evolving rapidly, the skills that are going to be needed in the future are not yet clear today. It depends on lifelong learning.” – Andrew Ng – AI guru, Coursera founder

Delivered during a session on Corporate Ladders, AI Reshuffled at the World Economic Forum in Davos in January 2026, this insight from Andrew Ng captures the essence of navigating an era where artificial intelligence advances at breakneck speed. Ng’s words underscore a pivotal shift: as AI reshapes jobs and workflows, the uncertainty of future skills demands a commitment to continuous adaptation1,2.

Andrew Ng: The Architect of Modern AI Education

Andrew Ng stands as one of the foremost figures in artificial intelligence, often dubbed an AI guru for his pioneering contributions to machine learning and online education. A British-born computer scientist, Ng co-founded Coursera in 2012, revolutionising access to higher education by partnering with top universities to offer massive open online courses (MOOCs). His platforms, including DeepLearning.AI and Landing AI, have democratised AI skills, training millions worldwide2,3.

Ng’s career trajectory is marked by landmark roles: he led the Google Brain project, which advanced deep learning at scale, and served as chief scientist at Baidu, applying AI to real-world applications in search and autonomous driving. As managing general partner at AI Fund, he invests in startups bridging AI with practical domains. At Davos 2026, Ng addressed fears of AI-driven job losses, arguing they are overstated. He broke jobs into tasks, noting AI handles only 30-40% currently, boosting productivity for those who adapt: ‘A person that uses AI will be so much more productive, they will replace someone that doesn’t use AI’2,3. His emphasis on coding as a ‘durable skill’-not for becoming engineers, but for building personalised software to automate workflows-aligns directly with the quoted challenge of unclear future skills1.

The Broader Context: AI’s Impact on Jobs and Skills at Davos 2026

The quote emerged amid Davos discussions on agentic AI systems-autonomous agents managing end-to-end workflows-pushing humans towards oversight, judgement, and accountability. Ng highlighted meta-cognitive agility: shifting from perishable technical skills to ‘learning to learn’1. This resonates with global concerns; IMF’s Kristalina Georgieva noted one in ten jobs in advanced economies already need new skills, with labour markets unprepared1. Ng urged upskilling, especially for regions like India, warning its IT services sector risks disruption without rapid AI literacy3,5.

Corporate strategies are evolving: the T-shaped model promotes AI literacy across functions (breadth) paired with irreplaceable domain expertise (depth). Firms rebuild talent ladders, replacing grunt work with AI-supported apprenticeships fostering early decision-making1. Ng’s optimism tempers hype; AI improves incrementally, not in dramatic leaps, yet demands proactive reskilling3.

Leading Theorists Shaping AI, Skills, and Lifelong Learning

Ng’s views build on foundational theorists in AI and labour economics:

  • Geoffrey Hinton, Yann LeCun, and Yoshua Bengio (the ‘Godfathers of AI’): Pioneered deep learning, enabling today’s breakthroughs. Hinton, Ng’s early collaborator at Google Brain, warns of AI risks but affirms its transformative potential for productivity2. Their work underpins Ng’s task-based job analysis.
  • Erik Brynjolfsson and Andrew McAfee (MIT): In ‘The Second Machine Age’, they theorise how digital technologies complement human skills, amplifying ‘non-routine’ cognitive tasks. This mirrors Ng’s productivity shift, where AI augments rather than replaces1,2.
  • Carl Benedikt Frey and Michael Osborne (Oxford): Their 2013 study quantified automation risks for 702 occupations, sparking debates on reskilling. Ng extends this by focusing on partial automation (30-40%) and lifelong learning imperatives2.
  • Daron Acemoglu (MIT): Critiques automation’s wage-polarising effects, advocating ‘so-so technologies’ that automate mid-skill tasks. Ng counters with optimism for human-AI collaboration via upskilling3.

These theorists converge on a consensus: AI disrupts routines but elevates human judgement, creativity, and adaptability-skills honed through lifelong learning, as Ng advocates.

Ng’s prescience positions this quote as a clarion call for individuals and organisations to embrace uncertainty through perpetual growth in an AI-driven world.

References

1. https://globaladvisors.biz/2026/01/23/the-ai-signal-from-the-world-economic-forum-2026-at-davos/

2. https://www.storyboard18.com/brand-makers/davos-2026-andrew-ng-says-fears-of-ai-driven-job-losses-are-exaggerated-87874.htm

3. https://www.moneycontrol.com/news/business/davos-summit/davos-2026-ai-is-continuously-improving-despite-perception-that-excitement-has-faded-says-andrew-ng-13780763.html

4. https://www.aicerts.ai/news/andrew-ng-open-source-ai-india-call-resonates-at-davos/

5. https://economictimes.com/tech/artificial-intelligence/india-must-speed-up-ai-upskilling-coursera-cofounder-andrew-ng/articleshow/126703083.cms

read more
Quote: Professor Hannah Fry – University of Cambridge

Quote: Professor Hannah Fry – University of Cambridge

“Humans are not very good at exponentials. And right now, at this moment, we are standing right on the bend of the curve. AGI is not a distant thought experiment anymore.” – Professor Hannah Fry – Univeristy of Cambridge

The quote comes at the end of a wide?ranging conversation between applied mathematician and broadcaster Professor Hannah Fry and DeepMind co?founder Shane Legg, recorded for the “Google DeepMind, the podcast” series in late 2025. Fry is reflecting on Legg’s decades?long insistence that artificial general intelligence would arrive much sooner than most experts expected, and on his argument that its impact will be structurally comparable to the Industrial Revolution: a technology that reshapes work, wealth, and the basic organisation of society rather than just adding another digital tool. Her remark that “humans are not very good at exponentials” is a pointed reminder of how easily people misread compounding processes, from pandemics to technological progress, and therefore underestimate how quickly “next decade” scenarios can become “this quarter” realities.?

Context of the quote

Fry’s line follows a discussion in which Legg lays out a stepwise picture of AI progress: from today’s uneven but impressive systems, through “minimal AGI” that can reliably perform the full range of ordinary human cognitive tasks, to “full AGI” capable of the most exceptional creative and scientific feats, and then on to artificial superintelligence that eclipses human capability in most domains. Throughout, Legg stresses that current models already exceed humans in language coverage, encyclopaedic knowledge and some kinds of problem solving, while still failing at basic visual reasoning, continual learning, and robust commonsense. The trajectory he sketches is not a gentle slope but a sharpening curve, driven by scaling laws, data, architectures and hardware; Fry’s “bend of the curve” image captures the moment when such a curve stops looking linear to human intuition and starts to feel suddenly, uncomfortably steep.?

That curve is not just about raw capability but about diffusion into the economy. Legg argues that over the next few years, AI will move from being a helpful assistant to doing a growing share of economically valuable work—starting with software engineering and other high?paid cognitive roles that can be done entirely through a laptop. He anticipates that tasks once requiring a hundred engineers might soon be done by a small team amplified by advanced AI tools, with similarly uneven but profound effects across law, finance, research, and other knowledge professions. By the time Fry delivers her closing reflection, the conversation has moved from technical definitions to questions of social contract: how to design a post?AGI economy, how to distribute the gains from machine intelligence, and how to manage the transition period in which disruption and opportunity coexist.?

Hannah Fry: person and perspective

Hannah Fry is a professor in the mathematics of cities who has built a public career explaining complex systems—epidemics, finance, urban dynamics and now AI—to broad audiences. Her training in applied mathematics and complexity science has made her acutely aware of how exponential processes play out in the real world, from contagion curves during COVID?19 to the compounding effect of small percentage gains in algorithmic performance and hardware efficiency. She has repeatedly highlighted the cognitive bias that leads people to underreact when growth is slow and overreact when it becomes visibly explosive, a theme she explicitly connects in this podcast to the early days of the pandemic, when warnings about exponential infection growth were largely ignored while life carried on as normal.?

In the AGI conversation, Fry positions herself as an interpreter between technical insiders and a lay audience that is already experiencing AI in everyday tools but may not yet grasp the systemic implications. Her remark that the general public may, in some sense, “get it” better than domain specialists echoes Legg’s observation that non?experts sometimes see current systems as already effectively “intelligent,” while many professionals in affected fields downplay the relevance of AI to their own work. When she says “AGI is not a distant thought experiment anymore,” she is distilling Legg’s timelines—his long?standing 50/50 prediction of minimal AGI by 2028, followed by full AGI within a decade—into a single, accessible warning that the window for slow institutional adaptation is closing.?

Meaning of “not very good at exponentials”

The specific phrase “humans are not very good at exponentials” draws on a familiar insight from behavioural economics and cognitive psychology: people routinely misjudge exponential growth, treating it as if it were linear. During the COVID?19 pandemic, this manifested in the gap between early warnings about exponential case growth and the public’s continued attendance at large events right up until visible crisis hit, an analogy Fry explicitly invokes in the episode. In technology, the same bias leads organisations to plan as if next year will look like this year plus a small increment, even when underlying drivers—compute, algorithmic innovation, investment, data availability—are compounding at rates that double capabilities over very short horizons.?

Fry’s “bend of the curve” language marks the point where incremental improvements accumulate to the point that qualitative change becomes hard to ignore: AI systems not only answering questions but autonomously writing production code, conducting literature reviews, proposing experiments, or acting as agents in the world. At that bend, the lag between capability and governance becomes a central concern; Legg emphasises that there will not be enough time for leisurely consensus?building once AGI is fully realised, hence his call for every academic discipline and sector—law, education, medicine, city planning, economics—to begin serious scenario work now. Fry’s closing comment translates that call into a general admonition: exponential technologies demand anticipatory thinking, not reactive crisis management.?

Leading theorists behind the ideas

The intellectual backdrop to Fry’s quote and Legg’s perspectives on AGI blends several strands of work in AI theory, safety and the study of technological revolutions.

  • Shane Legg and Ben Goertzel helped revive and popularise the term “artificial general intelligence” in the early 2000s to distinguish systems aimed at broad, human?like cognitive competence from “narrow AI” optimised for specific tasks. Legg’s own academic work, influenced by his supervisor Marcus Hutter, explores formal definitions of universal intelligence and the conditions under which machine systems could match or exceed human problem?solving across many domains.?

  • I. J. Good introduced the “intelligence explosion” hypothesis in 1965, arguing that a sufficiently advanced machine intelligence capable of improving its own design could trigger a runaway feedback loop of ever?greater capability. This notion of recursive self?improvement underpins much of the contemporary discourse about AI timelines and the risks associated with crossing particular capability thresholds.?

  • Eliezer Yudkowsky developed thought experiments and early arguments about AGI’s existential risks, emphasising that misaligned superintelligence could be catastrophically dangerous even if human developers never intended harm. His writing helped seed the modern AI safety movement and influenced researchers and entrepreneurs who later entered mainstream organisations.?

  • Nick Bostrom synthesised and formalised many of these ideas in “Superintelligence: Paths, Dangers, Strategies,” providing widely cited scenarios in which AGI rapidly transitions into systems whose goals and optimisation power outstrip human control. Bostrom’s work is central to Legg’s concern with how to steer AGI safely once it surpasses human intelligence, especially around questions of alignment, control and long?term societal impact.?

  • Geoffrey Hinton, Stuart Russell and other AI pioneers have added their own warnings in recent years: Hinton has drawn parallels between AI and other technologies whose potential harms were recognized only after wide deployment, while Russell has argued for a re?founding of AI as the science of beneficial machines explicitly designed to be uncertain about human preferences. Their perspectives reinforce Legg’s view that questions of ethics, interpretability and “System 2 safety”—ensuring that advanced systems can reason transparently about moral trade?offs—are not peripheral but central to responsible AGI development.?

Together, these theorists frame AGI as both a continuation of a long scientific project to build thinking machines and as a discontinuity in human history whose effects will compound faster than our default intuitions allow. In that context, Fry’s quote reads less as a rhetorical flourish and more as a condensed thesis: exponential dynamics in intelligence technologies are colliding with human cognitive biases and institutional inertia, and the moment to treat AGI as a practical, near?term design problem rather than a speculative future is now.?

References

https://eeg.cl.cam.ac.uk
https://en.wikipedia.org/wiki/Shane_Legg
https://www.youtube.com/watch?v=kMUdrUP-QCs
https://www.ibm.com/think/topics/artificial-general-intelligence
https://kingy.ai/blog/exploring-the-concept-of-artificial-general-intelligence-agi/
https://jetpress.org/v25.2/goertzel.pdf
https://www.dce.va/content/dam/dce/resources/en/digital-cultures/Encountering-AI—Ethical-and-Anthropological-Investigations.pdf
https://arxiv.org/pdf/1707.08476.pdf
https://hermathsstory.eu/author/admin/page/7/
https://www.shunryugarvey.com/wp-content/uploads/2021/03/YISR_I_46_1-2_TEXT_P-1.pdf
https://dash.harvard.edu/bitstream/handle/1/37368915/Nina%20Begus%20Dissertation%20DAC.pdf?sequence=1&isAllowed=y
https://www.facebook.com/groups/lifeboatfoundation/posts/10162407288283455/
https://globaldashboard.org/economics-and-development/
https://www.forbes.com/sites/gilpress/2024/03/29/artificial-general-intelligence-or-agi-a-very-short-history/
https://ebe.uct.ac.za/sites/default/files/content_migration/ebe_uct_ac_za/169/files/WEB%2520UCT%2520CHEM%2520D023%2520Centenary%2520Design.pdf

 

read more
Quote: Andrew Ng – AI guru, Coursera founder

Quote: Andrew Ng – AI guru, Coursera founder

“There’s one skill that is already emerging… it’s time to get everyone to learn to code…. not just the software engineers, but the marketers, HR professionals, financial analysts, and so on – the ones that know how to code are much more productive than the ones that don’t, and that gap is growing.” – Andrew Ng – AI guru, Coursera founder

In a forward-looking discussion at the World Economic Forum’s 2026 session on ‘Corporate Ladders, AI Reshuffled’, Andrew Ng passionately advocates for coding as the pivotal skill defining productivity in the AI era. Delivered in January 2026, this insight underscores how AI tools are democratising coding, enabling professionals beyond software engineering to harness technology for greater efficiency1. Ng’s message aligns with his longstanding mission to make advanced technology accessible through education and practical application.

Who is Andrew Ng?

Andrew Ng stands as one of the foremost figures in artificial intelligence, renowned for bridging academia, industry, and education. A British-born computer scientist, he earned his PhD from the University of California, Berkeley, and has held prestigious roles including adjunct professor at Stanford University. Ng co-founded Coursera in 2012, revolutionising online learning by offering courses to millions worldwide, including his seminal ‘Machine Learning’ course that has educated over 4 million learners. He led Google Brain, Google’s deep learning research project, from 2011 to 2014, pioneering applications that advanced AI capabilities across industries. Currently, as founder of Landing AI and DeepLearning.AI, Ng focuses on enterprise AI solutions and accessible education platforms. His influence extends to executive positions at Baidu and as a venture capitalist investing in AI startups1,2.

Context of the Quote

The quote emerges from Ng’s reflections on AI’s transformative impact on workflows, particularly at the WEF 2026 event addressing how AI reshuffles corporate structures. Here, Ng highlights ‘vibe coding’-AI-assisted coding that lowers barriers, allowing non-engineers like marketers, HR professionals, and financial analysts to prototype ideas rapidly without traditional hand-coding. He argues this boosts productivity and creativity, warning that the divide between coders and non-coders will widen. Recent talks, such as at Snowflake’s Build conference, reinforce this: ‘The bar to coding is now lower than it ever has been. People that code… will really get more done’1. Ng critiques academia for lagging behind, noting unemployment among computer science graduates due to outdated curricula ignoring AI tools, and stresses industry demand for AI-savvy talent1,2.

Leading Theorists and the Broader Field

Ng’s advocacy builds on foundational AI theories while addressing practical upskilling. Pioneers like Geoffrey Hinton, often called the ‘Godfather of Deep Learning’, laid groundwork through backpropagation and neural networks, influencing Ng’s Google Brain work. Hinton, Ng’s former advisor at Stanford, warns of AI’s job displacement risks but endorses human-AI collaboration. Yann LeCun, Meta’s Chief AI Scientist, complements this with convolutional neural networks essential for computer vision, emphasising open-source AI for broad adoption. Fei-Fei Li, ‘Godmother of AI’, advanced image recognition and co-directs Stanford’s Human-Centered AI Institute, aligning with Ng’s educational focus.

In skills discourse, World Economic Forum’s Future of Jobs Report 2025 projects technological skills, led by AI and big data, as fastest-growing in importance through 2030, alongside lifelong learning3. Microsoft CEO Satya Nadella echoes: ‘AI won’t replace developers, but developers who use AI will replace those who don’t’3. Nvidia’s Jensen Huang and Klarna’s Sebastian Siemiatkowski advocate AI agents and tools like Cursor, predicting hybrid human-AI teams1. Ng’s tips-take AI courses, build systems hands-on, read papers-address a talent crunch where 51% of tech leaders struggle to find AI skills2.

Implications for Careers and Workflows

  • AI-Assisted Coding: Tools like GitHub Copilot, Cursor, and Replit enable ‘agentic development’, delegating routine tasks to AI while humans focus on creativity1,3.
  • Universal Upskilling: Ng urges structured learning via platforms like Coursera, followed by practice, as theory alone insufficient-like studying aeroplanes without flying2.
  • Industry Shifts: Companies like Visa and DoorDash now require AI code generator experience; polyglot programming (Python, Rust) and prompt engineering rise1,3.
  • Warnings: Despite optimism, experts like Stuart Russell caution AI could disrupt 80% of jobs, underscoring adaptive skills2.

Ng’s vision positions coding not as a technical niche but a universal lever for productivity in an AI-driven world, urging immediate action to close the growing gap.

References

1. https://timesofindia.indiatimes.com/technology/tech-news/google-brain-founder-andrew-ng-on-why-it-is-still-important-to-learn-coding/articleshow/125247598.cms

2. https://www.finalroundai.com/blog/andrew-ng-ai-tips-2026

3. https://content.techgig.com/career-advice/top-10-developer-skills-to-learn-in-2026/articleshow/125129604.cms

4. https://www.coursera.org/in/articles/ai-skills

5. https://www.idnfinancials.com/news/58779/ai-expert-andrew-ng-programmers-are-still-needed-in-a-different-way

read more
Quote: Wingate, et al – MIT SMR

Quote: Wingate, et al – MIT SMR

“It is tempting for a company to believe that it will somehow benefit from AI while others will not, but history teaches a different lesson: Every serious technical advance ultimately becomes equally accessible to every company.” – Wingate, et al – MIT SMR

The Quote in Context

David Wingate, Barclay L. Burns, and Jay B. Barney’s assertion that companies cannot sustain competitive advantage through AI alone represents a fundamental challenge to prevailing business orthodoxy. Their observation-that every serious technical advance ultimately becomes equally accessible-draws from decades of technology adoption patterns and competitive strategy theory. This insight, published in the MIT Sloan Management Review in 2025, cuts through the hype surrounding artificial intelligence to expose a harder truth: technological parity, not technological superiority, is the inevitable destination.

The Authors and Their Framework

David Wingate, Barclay L. Burns, and Jay B. Barney

The three researchers who authored this influential piece bring complementary expertise to the question of sustainable competitive advantage. Their collaboration represents a convergence of strategic management theory and practical business analysis. By applying classical frameworks of competitive advantage to the contemporary AI landscape, they demonstrate that the fundamental principles governing technology adoption have not changed, even as the technology itself has become more sophisticated and transformative.

Their central thesis rests on a deceptively simple observation: artificial intelligence, like the internet, semiconductors, and electricity before it, possesses a critical characteristic that distinguishes it from sources of lasting competitive advantage. Because AI is fundamentally digital, it is inherently copyable, scalable, repeatable, predictable, and uniform. This digital nature means that any advantage derived from AI adoption will inevitably diffuse across the competitive landscape.

The Three Tests of Sustainable Advantage

Wingate, Burns, and Barney employ a rigorous analytical framework derived from resource-based theory in strategic management. They argue that for any technology to confer sustainable competitive advantage, it must satisfy three criteria simultaneously:

  • Valuable: The technology must create genuine economic value for the organisation
  • Unique: The technology must be unavailable to competitors
  • Inimitable: Competitors must be unable to replicate the advantage

Whilst AI unquestionably satisfies the first criterion-it is undeniably valuable-it fails the latter two. No organisation possesses exclusive access to AI technology, and the barriers to imitation are eroding rapidly. This analytical clarity explains why even early adopters cannot expect their advantages to persist indefinitely.

Historical Precedent and Technology Commoditisation

The Pattern of Technical Diffusion

The authors’ invocation of historical precedent is not merely rhetorical flourish; it reflects a well-documented pattern in technology adoption. When electricity became widely available, early industrial adopters gained temporary advantages in productivity and efficiency. Yet within a generation, electrical power became a commodity-a baseline requirement rather than a source of differentiation. The same pattern emerged with semiconductors, computing power, and internet connectivity. Each represented a genuine transformation of economic capability, yet each eventually became universally accessible.

This historical lens reveals a crucial distinction between transformative technologies and sources of competitive advantage. A technology can fundamentally reshape an industry whilst simultaneously failing to provide lasting differentiation for any single competitor. The value created by the technology accrues to the market as a whole, lifting all participants, rather than concentrating advantage in the hands of early movers.

The Homogenisation Effect

Wingate, Burns, and Barney emphasise that AI will function as a source of homogenisation rather than differentiation. As AI capabilities become standardised and widely distributed, companies using identical or near-identical AI platforms will produce increasingly similar products and services. Consider their example of multiple startups developing AI-powered digital mental health therapists: all building on comparable AI platforms, all producing therapeutically similar systems, all competing on factors beyond the underlying technology itself.

This homogenisation effect has profound strategic implications. It means that competitive advantage cannot reside in the technology itself but must instead emerge from what the authors term residual heterogeneity-the ability to create something unique that extends beyond what is universally accessible.

Challenging the Myths of Sustainable AI Advantage

Capital and Hardware Access

One common belief holds that companies with superior access to capital and computing infrastructure can sustain AI advantages. Wingate, Burns, and Barney systematically dismantle this assumption. Whilst it is true that organisations with the largest GPU farms can train the most capable models, scaling laws ensure diminishing returns. Recent models like GPT-4 and Gemini represent only marginal improvements over their predecessors despite requiring massive investments in data centres and engineering talent. The cost-benefit curve flattens dramatically at the frontier of capability.

Moreover, the hardware necessary for state-of-the-art AI training is becoming increasingly commoditised. Smaller models with 7 billion parameters now match the performance of yesterday’s 70-billion-parameter systems. This dual pressure-from above (ever-larger models with diminishing returns) and below (increasingly capable smaller models)-ensures that hardware access cannot sustain competitive advantage for long.

Proprietary Data and Algorithmic Innovation

Perhaps the most compelling argument for sustainable AI advantage has centred on proprietary data. Yet even this fortress is crumbling. The authors note that almost all AI models derive their training data from the same open or licensed datasets, producing remarkably similar performance profiles. Synthetic data generation is advancing rapidly, reducing the competitive moat that proprietary datasets once provided. Furthermore, AI models are becoming increasingly generalised-capable of broad competence across diverse tasks and easily adapted to proprietary applications with minimal additional training data.

The implication is stark: merely possessing large quantities of proprietary data will not provide lasting protection. As AI research advances toward greater statistical efficiency, the amount of proprietary data required to adapt general models to specific tasks will continue to diminish.

The Theoretical Foundations: Strategic Management Theory

Resource-Based View and Competitive Advantage

The analytical framework employed by Wingate, Burns, and Barney draws from the resource-based view (RBV) of the firm, a dominant paradigm in strategic management theory. Developed primarily by scholars including Jay Barney himself (one of the article’s authors), the RBV posits that sustainable competitive advantage derives from resources that are valuable, rare, difficult to imitate, and non-substitutable.

This theoretical tradition has proven remarkably durable precisely because it captures something fundamental about competition: advantages that can be easily replicated cannot persist. The RBV framework has successfully explained why some companies maintain competitive advantages whilst others do not, across industries and time periods. By applying this established theoretical lens to AI, Wingate, Burns, and Barney demonstrate that AI does not represent an exception to these fundamental principles-it exemplifies them.

The Distinction Between Transformative and Differentiating Technologies

A critical insight emerging from their analysis is the distinction between technologies that transform industries and technologies that confer competitive advantage. These are not synonymous. Electricity transformed manufacturing; the internet transformed commerce; semiconductors transformed computing. Yet none of these technologies provided lasting competitive advantage to any single organisation once they became widely adopted. The value they created was real and substantial, but it accrued to the market collectively rather than to individual competitors exclusively.

AI follows this established pattern. Its transformative potential is genuine and profound. It will reshape business processes, redefine skill requirements, unlock new analytical possibilities, and increase productivity across sectors. Yet these benefits will be available to all competitors, not reserved for the few. The strategic challenge for organisations is therefore not to seek advantage in the technology itself but to identify where advantage can still be found in an AI-saturated competitive landscape.

The Concept of Residual Heterogeneity

Beyond Technology: The Human Element

Wingate, Burns, and Barney introduce the concept of residual heterogeneity as the key to understanding where sustainable advantage lies in an AI-dominated future. Residual heterogeneity refers to the ability of a company to create something unique that extends beyond what is accessible to everyone else. It encompasses the distinctly human elements of business: creativity, insight, passion, and strategic vision.

This concept represents a return to first principles in competitive strategy. Before the AI era, before the digital revolution, before the internet, competitive advantage derived from human ingenuity, organisational culture, brand identity, customer relationships, and strategic positioning. The authors argue that these sources of advantage have not been displaced by technology; rather, they have become more important as technology itself becomes commoditised.

Practical Implications for Strategy

The strategic implication is clear: companies should not invest in AI with the expectation that the technology itself will provide lasting differentiation. Instead, they should view AI as a capability enabler-a tool that allows them to execute their distinctive strategy more effectively. The sustainable advantage lies not in having AI but in what the organisation does with AI that others cannot or will not replicate.

This might involve superior customer insight that informs how AI is deployed, distinctive brand positioning that AI helps reinforce, unique organisational culture that attracts talent capable of innovative AI applications, or strategic vision that identifies opportunities others overlook. In each case, the advantage derives from human creativity and strategic acumen, with AI serving as an accelerant rather than the source of differentiation.

Temporary Advantage and Strategic Timing

The Value of Being First

Whilst Wingate, Burns, and Barney emphasise that sustainable advantage cannot derive from AI, they implicitly acknowledge that temporary advantage has real strategic value. Early adopters can gain speed-to-market advantages, compress product development cycles, and accumulate learning curve advantages before competitors catch up. In fast-moving markets, a year or two of advantage can be decisive-sufficient to capture market share, build brand equity, establish customer switching costs, and create momentum that persists even after competitive parity is achieved.

The authors employ a surfing metaphor that captures this dynamic perfectly: every competitor can rent the same surfboard, but only a few will catch the first big wave. That wave may not last forever, but riding it well can carry a company far ahead. The temporary advantage is real; it is simply not sustainable in the long term.

Implications for Business Strategy and Innovation

Reorienting Strategic Thinking

The Wingate, Burns, and Barney framework calls for a fundamental reorientation of how organisations think about AI strategy. Rather than viewing AI as a source of competitive advantage, organisations should view it as a necessary capability-a baseline requirement for competitive participation. The strategic question is not “How can we use AI to gain advantage?” but rather “How can we use AI to execute our distinctive strategy more effectively than competitors?”

This reorientation has profound implications for resource allocation, talent acquisition, and strategic positioning. It suggests that organisations should invest in AI capabilities whilst simultaneously investing in the human creativity, strategic insight, and organisational culture that will ultimately determine competitive success. The technology is necessary but not sufficient.

The Enduring Importance of Human Creativity

Perhaps the most important implication of the authors’ analysis is the reassertion of human creativity as the ultimate source of competitive advantage. In an era of technological hype, it is easy to assume that machines will increasingly determine competitive outcomes. The Wingate, Burns, and Barney analysis suggests otherwise: as technology becomes commoditised, the distinctly human capacities for creativity, insight, and strategic vision become more valuable, not less.

This conclusion aligns with broader trends in strategic management theory, which have increasingly emphasised the importance of organisational culture, human capital, and strategic leadership. Technology amplifies these human capabilities; it does not replace them. The organisations that will thrive in an AI-saturated competitive landscape will be those that combine technological sophistication with distinctive human insight and creativity.

Conclusion: A Sobering Realism

Wingate, Burns, and Barney’s assertion that every serious technical advance ultimately becomes equally accessible represents a sobering but realistic assessment of competitive dynamics in the AI era. It challenges the prevailing narrative that early AI adoption will confer lasting competitive advantage. Instead, it suggests that organisations should approach AI with clear-eyed realism: as a transformative technology that will reshape industries and lift competitive baselines, but not as a source of sustainable differentiation.

The strategic imperative is therefore to invest in AI capabilities whilst simultaneously cultivating the human creativity, organisational culture, and strategic insight that will ultimately determine competitive success. The technology is essential; the human element is decisive. In this sense, the AI revolution represents not a departure from established principles of competitive advantage but a reaffirmation of them: lasting advantage derives from what is distinctive, difficult to imitate, and rooted in human creativity-not from technology that is inherently copyable and universally accessible.

References

1. https://www.sensenet.com/en/blog/posts/why-ai-can-provide-competitive-advantage

2. https://sloanreview.mit.edu/article/why-ai-will-not-provide-sustainable-competitive-advantage/

3. https://grtshw.substack.com/p/beyond-ai-human-insight-as-the-advantage

4. https://informedi.org/2025/05/16/why-ai-will-not-provide-sustainable-competitive-advantage/

5. https://shop.sloanreview.mit.edu/why-ai-will-not-provide-sustainable-competitive-advantage

read more
Quote: Andrew Ng – AI guru, Coursera founder

Quote: Andrew Ng – AI guru, Coursera founder

“Someone that knows how to use AI will replace someone that doesn’t, even if AI itself won’t replace a person. So getting through the hype to give people the skills they need is critical.” – Andrew Ng – AI guru, Coursera founder

The distinction Andrew Ng draws between AI replacing jobs and AI-capable workers replacing their peers represents a fundamental reorientation in how we should understand technological disruption. Rather than framing artificial intelligence as an existential threat to employment, Ng’s observation-articulated at the World Economic Forum in January 2026-points to a more granular reality: the competitive advantage lies not in the technology itself, but in human mastery of it.

The Context of the Statement

Ng made these remarks during a period of intense speculation about AI’s labour market impact. Throughout 2025 and into early 2026, technology companies announced significant workforce reductions, and public discourse oscillated between utopian and apocalyptic narratives about automation. Yet Ng’s position, grounded in his extensive experience building AI systems and training professionals, cuts through this polarisation with empirical observation.

Speaking at Davos on 19 January 2026, Ng emphasised that “for many jobs, AI can only do 30-40 per cent of the work now and for the foreseeable future.” This technical reality underpins his broader argument: the challenge is not mass technological unemployment, but rather a widening productivity gap between those who develop AI competency and those who do not. The implication is stark-in a world where AI augments rather than replaces human labour, the person wielding these tools becomes exponentially more valuable than the person without them.

Understanding the Talent Shortage

The urgency behind Ng’s call for skills development is rooted in concrete market dynamics. According to research cited by Ng, demand for AI skills has grown approximately 21 per cent annually since 2019. More dramatically, AI jumped from the 6th most scarce technology skill globally to the 1st in just 18 months. Fifty-one per cent of technology leaders report struggling to find candidates with adequate AI capabilities.

This shortage exists not because AI expertise is inherently rare, but because structured pathways to acquiring it remain underdeveloped. Ng has observed developers reinventing foundational techniques-such as retrieval-augmented generation (RAG) document chunking or agentic AI evaluation methods-that already exist in the literature. These individuals expend weeks on problems that could be solved in days with proper foundational knowledge. The inefficiency is not a failure of intelligence but of education.

The Architecture of Ng’s Approach

Ng’s prescription comprises three interconnected elements: structured learning, practical application, and engagement with research literature. Each addresses a specific gap in how professionals currently approach AI development.

Structured learning provides the conceptual scaffolding necessary to avoid reinventing existing solutions. Ng argues that taking relevant courses-whether through Coursera, his own DeepLearning.AI platform, or other institutions-establishes a foundation in proven approaches and common pitfalls. This is not about shortcuts; rather, it is about building mental models that allow practitioners to make informed decisions about when to adopt existing solutions and when innovation is genuinely warranted.

Hands-on practice translates theory into capability. Ng uses the analogy of aviation: studying aerodynamics for years does not make one a pilot. Similarly, understanding AI principles requires experimentation with actual systems. Modern AI tools and frameworks lower the barrier to entry, allowing practitioners to build projects without starting from scratch. The combination of coursework and building creates a feedback loop where gaps in understanding become apparent through practical challenges.

Engagement with research provides early signals about emerging standards and techniques. Reading academic papers is demanding and less immediately gratifying than building applications, yet it offers a competitive advantage by exposing practitioners to innovations before they become mainstream.

The Broader Theoretical Context

Ng’s perspective aligns with and extends classical economic theories of technological adoption and labour market dynamics. The concept of “skill-biased technological change”-the idea that new technologies increase the relative demand for skilled workers-has been central to labour economics since the 1990s. Economists including David Autor and Frank Levy have documented how computerisation did not eliminate jobs wholesale but rather restructured labour markets, creating premium opportunities for those who could work effectively with new tools whilst displacing those who could not.

What distinguishes Ng’s analysis is its specificity to AI and its emphasis on the speed of adaptation required. Previous technological transitions-from mechanisation to computerisation-unfolded over decades, allowing gradual workforce adjustment. AI adoption is compressing this timeline significantly. The productivity gap Ng identifies is not merely a temporary friction but a structural feature of labour markets in the near term, creating urgent incentives for rapid upskilling.

Ng’s work also reflects insights from organisational learning theory, particularly the distinction between individual capability and organisational capacity. Companies can acquire AI tools readily; what remains scarce is the human expertise to deploy them effectively. This scarcity is not permanent-it reflects a lag between technological availability and educational infrastructure-but it creates a window of opportunity for those who invest in capability development now.

The Nuance on Job Displacement

Importantly, Ng does not claim that AI poses no labour market risks. He acknowledges that certain roles-contact centre positions, translation work, voice acting-face sharper disruption because AI can perform a higher percentage of the requisite tasks. However, he contextualises these as minority cases rather than harbingers of economy-wide displacement.

His framing rejects both technological determinism and complacency. AI will not automatically eliminate most jobs, but neither will workers remain unaffected if they fail to adapt. The outcome depends on human agency: specifically, on whether individuals and institutions invest in building the skills necessary to work alongside AI systems.

Implications for Professional Development

The practical consequence of Ng’s analysis is straightforward: professional development in AI is no longer optional for knowledge workers. The competitive dynamic he describes-where AI-capable workers become more productive and thus more valuable-creates a self-reinforcing cycle. Early adopters of AI skills gain productivity advantages, which translate into career advancement and higher compensation, which in turn incentivises further investment in capability development.

This dynamic also has implications for organisational strategy. Companies that invest in systematic training programmes for their workforce-ensuring broad-based AI literacy rather than concentrating expertise in specialist teams-position themselves to capture productivity gains more rapidly and broadly than competitors relying on external hiring alone.

The Hype-Reality Gap

Ng’s emphasis on “getting through the hype” addresses a specific problem in contemporary AI discourse. Public narratives about AI tend toward extremes: either utopian visions of abundance or dystopian scenarios of mass unemployment. Both narratives, in Ng’s view, obscure the practical reality that AI is a tool requiring human expertise to deploy effectively.

The hype creates two problems. First, it generates unrealistic expectations about what AI can accomplish autonomously, leading organisations to underinvest in the human expertise necessary to realise AI’s potential. Second, it creates anxiety that discourages people from engaging with AI development, paradoxically worsening the talent shortage Ng identifies.

By reframing the challenge as fundamentally one of skills and adaptation rather than technological inevitability, Ng provides both a more accurate assessment and a more actionable roadmap. The future is not predetermined by AI’s capabilities; it will be shaped by how quickly and effectively humans develop the competencies to work with these systems.

References

1. https://www.finalroundai.com/blog/andrew-ng-ai-tips-2026

2. https://www.moneycontrol.com/artificial-intelligence/davos-2026-andrew-ng-says-ai-driven-job-losses-have-been-overstated-article-13779267.html

3. https://www.storyboard18.com/brand-makers/davos-2026-andrew-ng-says-fears-of-ai-driven-job-losses-are-exaggerated-87874.htm

4. https://m.umu.com/ask/a11122301573853762262

read more
Term: Jevons paradox

Term: Jevons paradox

“Jevons paradox is an economic theory that states that as technological efficiency in using a resource increases, the total consumption of that resource also increases, rather than decreasing. Efficiency gains make the resource cheaper and more accessible, which in turn stimulates higher demand and new uses.” – Jevons paradox

Definition

The Jevons paradox is an economic theory stating that as technological efficiency in using a resource increases, the total consumption of that resource also increases rather than decreasing. Efficiency gains make the resource cheaper and more accessible, which stimulates higher demand and enables new uses, ultimately offsetting the conservation benefits of the initial efficiency improvement.

Core Mechanism: The Rebound Effect

The paradox operates through what economists call the rebound effect. When efficiency improvements reduce the cost of using a resource, consumers and businesses find it more economically attractive to use that resource more intensively. This increased affordability creates a feedback loop: lower costs lead to expanded consumption, which can completely negate or exceed the original efficiency gains.

The rebound effect exists on a spectrum. A rebound effect between 0 and 100 percent-known as “take-back”-means actual consumption is reduced but not as much as expected. However, when the rebound effect exceeds 100 percent, the Jevons paradox applies: efficiency gains cause overall consumption to increase absolutely.

Historical Origins and William Stanley Jevons

The paradox is named after William Stanley Jevons (1835-1882), an English economist and logician who first identified this phenomenon in 1865. Jevons observed that as steam engine efficiency improved throughout the Industrial Revolution, Britain’s total coal consumption increased rather than decreased. He recognised that more efficient steam engines made coal cheaper to use-both directly and indirectly, since more efficient engines could pump water from coal mines more economically-yet simultaneously made coal more valuable by enabling profitable new applications.

Jevons’ insight was revolutionary: efficiency improvements paradoxically expanded the scale of coal extraction and consumption. As coal became cheaper, incomes rose across the coal-fired industrial economy, and profits were continuously reinvested to expand production further. This dynamic became the engine of industrial capitalism’s growth.

Contemporary Examples

Energy and Lighting: Modern LED bulbs consume far less electricity than incandescent bulbs, yet overall lighting energy consumption has not decreased significantly. The reduced cost per light unit has prompted widespread installation of additional lights-in homes, outdoor spaces, and seasonal displays-extending usage hours and offsetting efficiency gains.

Transportation: Vehicles have become substantially more fuel-efficient, yet total fuel consumption continues to rise. When driving becomes cheaper, consumers afford to drive faster, further, or more frequently than before. A 5 percent fuel efficiency gain might reduce consumption by only 2 percent, with the missing 3 percent attributable to increased driving behaviour.

Systemic Scale: Research from 2007 suggested the Jevons paradox likely exists across 18 European countries and applies not merely to isolated sectors but to entire economies. As efficiency improvements reduce production costs across multiple industries, economic growth accelerates, driving increased extraction and consumption of natural resources overall.

Factors Influencing the Rebound Effect

The magnitude of the rebound effect varies significantly based on market maturity and income levels. In developed countries with already-high resource consumption, efficiency improvements produce weaker rebound effects because consumers and businesses have less capacity to increase usage further. Conversely, in developing economies or emerging markets, the same efficiency gains may trigger stronger rebound effects as newly affordable resources enable expanded consumption patterns.

Income also influences the effect: higher-income populations exhibit weaker rebound effects because they already consume resources at near-saturation levels, whereas lower-income populations may dramatically increase consumption when efficiency makes resources more affordable.

The Paradox Beyond Energy

The Jevons paradox extends beyond energy and resources. The principle applies wherever efficiency improvements reduce costs and expand accessibility. Disease control advances, for instance, have enabled humans and livestock to live at higher densities, eventually creating conditions for more severe outbreaks. Similarly, technological progress in production systems-including those powering the gig economy-achieves higher operational efficiency, making exploitation of natural inputs cheaper and more manageable, yet paradoxically increasing total resource demand.

Implications for Sustainability

The Jevons paradox presents a fundamental challenge to conventional sustainability strategies that rely primarily on technological efficiency improvements. Whilst efficiency gains lower costs and enhance output, they simultaneously increase demand and overall resource consumption, potentially increasing pollution and environmental degradation rather than reducing it.

Addressing the paradox requires systemic approaches beyond efficiency alone. These include transitioning towards circular economies, promoting sharing and collaborative consumption models, implementing legal limits on resource extraction, and purposefully constraining economic scale. Some theorists argue that setting deliberate limits on resource use-rather than pursuing ever-greater efficiency-may be necessary to achieve genuine sustainability. As one perspective suggests: “Efficiency makes growth. But limits make creativity.”

Contemporary Relevance

In the 21st century, as environmental pressures intensify and macroeconomic conditions suggest accelerating expansion rates, the Jevons paradox has become increasingly pronounced and consequential. The principle now applies to emerging technologies including artificial intelligence, where computational efficiency improvements may paradoxically increase overall energy demand and resource consumption as new applications become economically viable.

References

1. https://www.greenchoices.org/news/blog-posts/the-jevons-paradox-when-efficiency-leads-to-increased-consumption

2. https://www.resilience.org/stories/2020-06-17/jevons-paradox/

3. https://www.youtube.com/watch?v=MTfwhbfMnNc

4. https://lpcentre.com/articles/jevons-paradox-rethinking-sustainability

5. https://news.northeastern.edu/2025/02/07/jevons-paradox-ai-future/

6. https://adgefficiency.com/blog/jevons-paradox/

read more
Quote: Fei-Fei Li – Godmother of AI

Quote: Fei-Fei Li – Godmother of AI

“Fearless is to be free. It’s to get rid of the shackles that constrain your creativity, your courage, and your ability to just get s*t done.” – Fei-Fei Li – Godmother of AI

Context of the Quote

This powerful statement captures Fei-Fei Li’s philosophy on perseverance in research and innovation, particularly within artificial intelligence (AI). Spoken in a discussion on enduring hardship, Li emphasises how fearlessness liberates the mind in the realm of imagination and hypothesis-driven work. Unlike facing uncontrollable forces like nature, intellectual pursuits allow one to push boundaries without fatal constraints, fostering curiosity and bold experimentation1. The quote underscores her belief that true freedom in science comes from shedding self-imposed limitations to drive progress.

Backstory of Fei-Fei Li

Fei-Fei Li, often hailed as the ‘Godmother of AI’, is the inaugural Sequoia Professor of Computer Science at Stanford University and a founding co-director of the Stanford Institute for Human-Centered Artificial Intelligence. Her journey began in Chengdu, China, where she was born into a family disrupted by the Cultural Revolution. Her mother, an academic whose dreams were crushed by political turmoil, instilled rebellion and resilience. At 16, Li’s brave parents uprooted the family, leaving everything behind for America to offer their daughter better opportunities-far from ‘tiger parenting’, they encouraged independence amid poverty and cultural adjustment in New Jersey2.

Li excelled despite challenges, initially drawn to physics for its audacious questions, a passion honed at Princeton University. There, she learned to ask bold queries of nature, a mindset that pivoted her to AI. Her breakthrough came with ImageNet, a vast visual database that revived computer vision and catalysed deep learning revolutions, enabling systems to recognise images like humans. Today, she champions ‘human-centred AI’, stressing that people create, use, and must shape AI’s societal impact4,5. Li seeks ‘intellectual fearlessness’ in collaborators-the courage to tackle hard problems fully6.

Leading Theorists in AI and Fearlessness

Li’s ideas echo foundational AI thinkers who embodied fearless innovation:

  • Alan Turing: The father of theoretical computer science and AI, Turing proposed the ‘Turing Test’ in 1950, boldly envisioning machines mimicking human intelligence despite post-war skepticism. His universal machine concept laid AI’s computational groundwork.
  • John McCarthy: Coined ‘artificial intelligence’ in 1956 at the Dartmouth Conference, igniting the field. Fearlessly, he pioneered Lisp programming and time-sharing systems, pushing practical AI amid funding winters.
  • Marvin Minsky: MIT’s AI pioneer co-founded the field at Dartmouth. His ‘Society of Mind’ theory posited intelligence as emergent from simple agents, challenging monolithic brain models with audacious simplicity.
  • Geoffrey Hinton: The ‘Godfather of Deep Learning’, Hinton persisted through AI winters, proving neural networks viable. His backpropagation work and AlexNet contributions (built on Li’s ImageNet) revived the field1.
  • Yann LeCun & Yoshua Bengio: With Hinton, these ‘Godfathers of AI’ advanced convolutional networks and sequence learning, fearlessly advocating deep learning when dismissed as implausible.

Li builds on these legacies, shifting focus to ethical, human-augmented AI. She critiques ‘single genius’ histories, crediting collaborative bravery-like her parents’ and Princeton’s influence1,4. In the AI age, her call to fearlessness urges scientists and entrepreneurs to embrace uncertainty for humanity’s benefit3.

References

1. https://www.youtube.com/watch?v=KhnNgQoEY14

2. https://www.youtube.com/watch?v=z1g1kkA1M-8

3. https://mastersofscale.com/episode/how-to-be-fearless-in-the-ai-age/

4. https://tim.blog/2025/12/09/dr-fei-fei-li-the-godmother-of-ai/

5. https://www.youtube.com/watch?v=Ctjiatnd6Xk

6. https://www.youtube.com/shorts/hsHbSkpOu2A

7. https://www.youtube.com/shorts/qGLJeJ1xwLI

read more
Quote: Fei-Fei Li – Godmother of AI

Quote: Fei-Fei Li – Godmother of AI

“In the AI age, trust cannot be outsourced to machines. Trust is fundamentally human. It’s at the individual level, community level, and societal level.” – Fei-Fei Li – Godmother of AI

The Quote and Its Significance

This statement encapsulates a profound philosophical stance on artificial intelligence that challenges the prevailing techno-optimism of our era. Rather than viewing AI as a solution to human problems-including the problem of trust itself-Fei-Fei Li argues for the irreducible human dimension of trust. In an age where algorithms increasingly mediate our decisions, relationships, and institutions, her words serve as a clarion call: trust remains fundamentally a human endeavour, one that cannot be delegated to machines, regardless of their sophistication.

Who Is Fei-Fei Li?

Fei-Fei Li stands as one of the most influential voices in artificial intelligence research and ethics today. As co-director of Stanford’s Institute for Human-Centered Artificial Intelligence (HAI), founded in 2019, she has dedicated her career to ensuring that AI development serves humanity rather than diminishes it. Her influence extends far beyond academia: she was appointed to the United Nations Scientific Advisory Board, named one of TIME’s 100 Most Influential People in AI, and has held leadership roles at Google Cloud and Twitter.

Li’s most celebrated contribution to AI research is the creation of ImageNet, a monumental dataset that catalysed the deep learning revolution. This achievement alone would secure her place in technological history, yet her impact extends into the ethical and philosophical dimensions of AI development. In 2024, she co-founded World Labs, an AI startup focused on spatial intelligence systems designed to augment human capability-a venture that raised $230 million and exemplifies her commitment to innovation grounded in ethical principles.

Beyond her technical credentials, Li co-founded AI4ALL, a non-profit organisation dedicated to promoting diversity and inclusion in the AI sector, reflecting her conviction that AI’s future must be shaped by diverse voices and perspectives.

The Core Philosophy: Human-Centred AI

Li’s assertion about trust emerges from a broader philosophical framework that she terms human-centred artificial intelligence. This approach fundamentally rejects the notion that machines should replace human judgment, particularly in domains where human dignity, autonomy, and values are at stake.

In her public statements, Li has articulated a concern that resonates throughout her work: the language we use about AI shapes how we develop and deploy it. She has expressed deep discomfort with the word “replace” when discussing AI’s relationship to human labour and capability. Instead, she advocates for framing AI as augmenting or enhancing human abilities rather than supplanting them. This linguistic shift reflects a philosophical commitment: AI should amplify human creativity and ingenuity, not reduce humans to mere task-performers.

Her reasoning is both biological and existential. As she has explained, humans are slower runners, weaker lifters, and less capable calculators than machines-yet “we are so much more than those narrow tasks.” To allow AI to define human value solely through metrics of speed, strength, or computational power is to fundamentally misunderstand what makes us human. Dignity, creativity, moral judgment, and relational capacity cannot be outsourced to algorithms.

The Trust Question in Context

Li’s statement about trust addresses a critical vulnerability in contemporary society. As AI systems increasingly mediate consequential decisions-from healthcare diagnoses to criminal sentencing, from hiring decisions to financial lending-society faces a temptation to treat these systems as neutral arbiters. The appeal is understandable: machines do not harbour conscious bias, do not tire, and can process vast datasets instantaneously.

Yet Li’s insight cuts to the heart of a fundamental misconception. Trust, in her formulation, is not merely a technical problem to be solved through better algorithms or more transparent systems. Trust is a social and moral phenomenon that exists at three irreducible levels:

  • Individual level: The personal relationships and judgments we make about whether to rely on another person or institution
  • Community level: The shared norms and reciprocal commitments that bind groups together
  • Societal level: The institutional frameworks and collective agreements that enable large-scale cooperation

Each of these levels involves human agency, accountability, and the capacity to be wronged. A machine cannot be held morally responsible; a human can. A machine cannot understand the context of a community’s values; a human can. A machine cannot participate in the democratic deliberation necessary to shape societal institutions; a human must.

Leading Theorists and Related Intellectual Traditions

Li’s thinking draws upon and contributes to several important intellectual traditions in philosophy, ethics, and social theory:

Human Dignity and Kantian Ethics

At the philosophical foundation of Li’s work lies a commitment to human dignity-the idea that humans possess intrinsic worth that cannot be reduced to instrumental value. This echoes Immanuel Kant’s categorical imperative: humans must never be treated merely as means to an end, but always also as ends in themselves. When AI systems reduce human workers to optimisable tasks, or when algorithmic systems treat individuals as data points rather than moral agents, they violate this fundamental principle. Li’s insistence that “if AI applications take away that sense of dignity, there’s something wrong” is fundamentally Kantian in its ethical architecture.

Feminist Technology Studies and Care Ethics

Li’s emphasis on relationships, context, and the irreducibility of human judgment aligns with feminist critiques of technology that emphasise care, interdependence, and situated knowledge. Scholars in this tradition-including Donna Haraway, Lucy Suchman, and Safiya Noble-have long argued that technology is never neutral and that the pretence of objectivity often masks particular power relations. Li’s work similarly insists that AI development must be grounded in explicit values and ethical commitments rather than presented as value-neutral problem-solving.

Social Epistemology and Trust

The philosophical study of trust has been enriched in recent decades by work in social epistemology-the study of how knowledge is produced and validated collectively. Philosophers such as Miranda Fricker have examined how trust is distributed unequally across society, and how epistemic injustice occurs when certain voices are systematically discredited. Li’s emphasis on trust at the community and societal levels reflects this sophisticated understanding: trust is not a technical property but a social achievement that depends on fair representation, accountability, and recognition of diverse forms of knowledge.

The Ethics of Artificial Intelligence

Li contributes to and helps shape the emerging field of AI ethics, which includes thinkers such as Stuart Russell, Timnit Gebru, and Kate Crawford. These scholars have collectively argued that AI development cannot be separated from questions of power, justice, and human flourishing. Russell’s work on value alignment-ensuring that AI systems pursue goals aligned with human values-provides a technical framework for the philosophical commitments Li articulates. Gebru and Crawford’s work on data justice and algorithmic bias demonstrates how AI systems can perpetuate and amplify existing inequalities, reinforcing Li’s conviction that human oversight and ethical deliberation remain essential.

The Philosophy of Technology

Li’s thinking also engages with classical philosophy of technology, particularly the work of thinkers like Don Ihde and Peter-Paul Verbeek, who have argued that technologies are never mere tools but rather reshape human practices, relationships, and possibilities. The question is not whether AI will change society-it will-but whether that change will be guided by human values or will instead impose its own logic upon us. Li’s advocacy for light-handed, informed regulation rather than heavy-handed top-down control reflects a nuanced understanding that technology development requires active human governance, not passive acceptance.

The Broader Context: AI’s Transformative Power

Li’s emphasis on trust must be understood against the backdrop of AI’s extraordinary transformative potential. She has stated that she believes “our civilisation stands on the cusp of a technological revolution with the power to reshape life as we know it.” Some experts, including AI researcher Kai-Fu Lee, have argued that AI will change the world more profoundly than electricity itself.

This is not hyperbole. AI systems are already reshaping healthcare, scientific research, education, employment, and governance. Deep neural networks have demonstrated capabilities that surprise even their creators-as exemplified by AlphaGo’s unexpected moves in the ancient game of Go, which violated centuries of human strategic wisdom yet proved devastatingly effective. These systems excel at recognising patterns that humans cannot perceive, at scales and speeds beyond human comprehension.

Yet this very power makes Li’s insistence on human trust more urgent, not less. Precisely because AI is so powerful, precisely because it operates according to logics we cannot fully understand, we cannot afford to outsource trust to it. Instead, we must maintain human oversight, human accountability, and human judgment at every level where AI affects human lives and communities.

The Challenge Ahead

Li frames the challenge before us as fundamentally moral rather than merely technical. Engineers can build more transparent algorithms; ethicists can articulate principles; regulators can establish guardrails. But none of these measures can substitute for the hard work of building trust-at the individual level through honest communication and demonstrated reliability, at the community level through inclusive deliberation and shared commitment to common values, and at the societal level through democratic institutions that remain responsive to human needs and aspirations.

Her vision is neither techno-pessimistic nor naïvely optimistic. She does not counsel fear or rejection of AI. Rather, she advocates for what she calls “very light-handed and informed regulation”-guardrails rather than prohibition, guidance rather than paralysis. But these guardrails must be erected by humans, for humans, in service of human flourishing.

In an era when trust in institutions has eroded-when confidence in higher education, government, and media has declined precipitously-Li’s message carries particular weight. She acknowledges the legitimate concerns about institutional trustworthiness, yet argues that the solution is not to replace human institutions with algorithmic ones, but rather to rebuild human institutions on foundations of genuine accountability, transparency, and commitment to human dignity.

Conclusion: Trust as a Human Responsibility

Fei-Fei Li’s statement that “trust cannot be outsourced to machines” is ultimately a statement about human responsibility. In the age of artificial intelligence, we face a choice: we can attempt to engineer our way out of the messy, difficult work of building and maintaining trust, or we can recognise that trust is precisely the work that remains irreducibly human. Li’s life’s work-from ImageNet to the Stanford HAI Institute to World Labs-represents a sustained commitment to the latter path. She insists that we can harness AI’s extraordinary power whilst preserving what makes us human: our capacity for judgment, our commitment to dignity, and our ability to trust one another.

References

1. https://www.hoover.org/research/rise-machines-john-etchemendy-and-fei-fei-li-our-ai-future

2. https://economictimes.com/magazines/panache/stanford-professor-calls-out-the-narrative-of-ai-replacing-humans-says-if-ai-takes-away-our-dignity-something-is-wrong/articleshow/122577663.cms

3. https://www.nisum.com/nisum-knows/top-10-thought-provoking-quotes-from-experts-that-redefine-the-future-of-ai-technology

4. https://www.goodreads.com/author/quotes/6759438.Fei_Fei_Li

read more
Quote: Nate B. Jones – On “Second Brains”

Quote: Nate B. Jones – On “Second Brains”

“For the first time in human history, we have access to systems that do not just passively store information, but actively work against that information we give it while we sleep and do other things-systems that can classify, route, summarize, surface, or nudge.” – Nate B. Jones – On “Second Brains”

Context of the Quote

This striking observation comes from Nate B. Jones in his video Why 2026 Is the Year to Build a Second Brain (And Why You NEED One), where he argues that human brains were never designed for storage but for thinking.1 Jones highlights the cognitive tax of forcing memory onto our minds, which leads to forgotten details in relationships and missed opportunities.1 Traditional systems demand effort at inopportune moments-like tagging notes during a meeting or drive-forcing users to handle classification, routing, and organisation in real time.1

Jones contrasts this with AI-powered second brains: frictionless systems where capturing a thought takes seconds, after which AI classifiers and routers automatically sort it into buckets like people, projects, ideas, or tasks-without user intervention.1 These systems include bouncers to filter junk, ensuring trust and preventing the ‘junk drawer’ effect that kills most note-taking apps.1 The result is an ‘AI loop’ that works tirelessly, extracting details, writing summaries, and maintaining a clean memory layer even when the user sleeps or focuses elsewhere.1

Who is Nate B. Jones?

Nate B. Jones is a prominent voice in AI strategy and productivity, running the YouTube channel AI News & Strategy Daily with over 122,000 subscribers.1 He produces content on leveraging AI for career enhancement, building no-code apps, and creating personal knowledge systems.4,5 Jones shares practical guides, such as his Bridge the Implementation Gap: Build Your AI Second Brain, which outlines step-by-step setups using tools like Notion, Obsidian, and Mem.3

His work targets knowledge workers and teams, addressing pitfalls like perfectionism and tool overload.3 In another video, How I Built a Second Brain with AI (The 4 Meta-Skills), he demonstrates offloading cognitive load through AI-driven reflection, identity debugging, and frameworks that enable clearer thinking and execution.2 Jones exemplifies rapid AI application, such as building a professional-looking travel app in ChatGPT in 25 minutes without code.4 His philosophy: AI second brains create compounding assets that reduce information chaos, boost decision-making, and free humans for deep work.3

Backstory of ‘Second Brains’

The concept of a second brain builds on decades of personal knowledge management (PKM). It gained traction with Tiago Forte, whose 2022 book Building a Second Brain popularised the CODE framework: Capture, Organise, Distil, Express. Forte’s system emphasises turning notes into actionable insights, but relies heavily on user-driven organisation-prone to failure due to taxonomy decisions at capture time.1

Pre-AI tools like Evernote and Roam Research introduced linking and search, yet still demanded active sorting.3 Jones evolves this into AI-native systems, where machine learning handles the heavy lifting: classifiers decide buckets, summarisers extract essence, and nudges surface relevance.1,3 This aligns with 2026’s projected AI maturity, making frictionless capture (under 5 seconds) viable and consistent.1

Leading Theorists in AI-Augmented Cognition

  • Tiago Forte: Pioneer of modern second brains. His PARA method (Projects, Areas, Resources, Archives) structures knowledge for action. Forte stresses ‘progressive summarisation’ to distil notes, influencing AI adaptations like Jones’s sorters and extractors.3
  • Andy Matuschak: Creator of ‘evergreen notes’ in tools like Roam. Advocates spaced repetition and networked thought, arguing brains excel at pattern-matching, not rote storage-echoed in Jones’s anti-junk-drawer bouncers.1
  • Nick Milo: Obsidian evangelist, promotes ‘linking your thinking’ via bi-directional links. His work prefigures AI surfacing of connections across notes.3
  • David Allen: GTD (Getting Things Done) founder. Introduced capture to zero cognitive load, but manual. AI second brains automate his ‘next actions’ routing.1
  • Herbert Simon: Nobel economist on bounded rationality. Coined ‘satisficing’-his ideas underpin why AI classifiers beat human taxonomy, freeing mental bandwidth.1

These theorists converge on offloading storage to amplify thinking. Jones synthesises their insights with AI, creating systems that not only store but work-classifying, nudging, and evolving autonomously.1,2,3

References

1. https://www.youtube.com/watch?v=0TpON5T-Sw4

2. https://www.youtube.com/watch?v=0k6IznDODPA

3. https://www.natebjones.com/prompts-and-guides/products/second-brain

4. https://natesnewsletter.substack.com/p/i-built-a-10k-looking-ai-app-in-chatgpt

5. https://www.youtube.com/watch?v=UhyxDdHuM0A

read more
Term: Moltbot (formerly Clawdbot)

Term: Moltbot (formerly Clawdbot)

“Moltbot (formerly Clawdbot), a personal AI assistant, has gone viral within weeks of its launch, drawing thousands of users willing to tackle the technical setup required, even though it started as a scrappy personal project built by one developer for his own use.” – Moltbot (formerly Clawdbot)

Moltbot (formerly Clawdbot) is an open-source, self-hosted personal AI assistant that runs continuously on your own hardware (for example a Mac mini, Raspberry Pi, old laptop, or low-cost cloud server) and connects to everyday messaging channels such as WhatsApp, Telegram, iMessage, or similar chat apps so that you can talk to it as if it were a human teammate rather than a traditional app.

Instead of living purely in the cloud like many mainstream assistants, it is designed as “an AI that actually does things”: it can execute real commands on your machine, including managing your calendar and email, browsing the web, organizing local files, and running terminal commands or scripts under your control.

At its core, Moltbot is an agentic system: you choose and configure the underlying large language model (Anthropic Claude, OpenAI models, or local models), and Moltbot wraps that model with tools and permissions so that the AI can observe state on your computer, decide on a sequence of actions, and iteratively move from a current state toward a desired state, much closer to a junior digital employee than a simple chatbot.

This agentic design makes it valuable for complex, multi-step workflows such as triaging inbound email, preparing briefings from documents and web sources, or orchestrating routine maintenance tasks, with the human defining objectives and guardrails while the assistant executes within those constraints. The project emphasizes a privacy-first, owner-controlled architecture: your prompts, files, and system access stay on the machine you control, with only model calls leaving the device when you opt to use a remote API, a proposition that has resonated strongly with developers and power users wary of funneling sensitive workstreams through opaque cloud ecosystems.

Moltbot’s origin story reinforces this positioning: it began in late 2025 as a scrappy personal project by Austrian engineer Peter Steinberger, best known for founding PSPDFKit (later rebranded Nutrient), a PDF and document-processing SDK that grew into infrastructure used by hundreds of millions of end users before being acquired by Insight Partners.

After exiting PSPDFKit and stepping away from day-to-day coding, Steinberger described a period of creative exhaustion, only to be pulled back into building when the momentum around modern AI—and especially Anthropic’s Claude models—convinced him he could turn “Claude Code into his computer,” effectively treating an AI coding environment and agent as the primary interface to his machine.

The first iteration of his assistant, Clawdbot (with its mascot character “Clawd,” a playful space lobster inspired by the name Claude), was built astonishingly quickly—early prototypes reportedly took around an hour—and shared as a personal tool that showed how an AI, wired into real system capabilities, could meaningfully reduce friction in managing a digital life.

Once Steinberger released the project publicly, traction was explosive: the repository rapidly attracted tens of thousands of GitHub stars (with some reports noting 50,000–60,000 stars within weeks), a fast-growing contributor base, and an active community Discord, as developers experimented with running Moltbot as a 24/7 “full-time AI employee” on cheap hardware.

Media coverage highlighted its distinctive blend of autonomy and practicality—“Claude with hands” rather than just a conversational agent—and its appeal to technically sophisticated users willing to accept a more involved setup process in exchange for real, system-level leverage over their workflows.

A trademark dispute over the similarity between “Clawd” and Anthropic’s “Claude” forced a rebrand to Moltbot in early 2026, but the underlying architecture, community, and “lobster soul” of the project remained intact, underscoring that the real innovation lies in the pattern of a self-hosted, action-oriented personal AI rather than in the specific name.

From a strategic perspective, Moltbot represents an emergent archetype: the personal AI infrastructure or “personal operating system” where an individual deploys a modular, agentic system on their own stack, integrates it tightly with their tools, and iteratively composes new capabilities over time.

This pattern shifts AI from being a generic productivity overlay to becoming part of the user’s core execution engine: instead of repeatedly solving the same problem, owners encapsulate solutions into reusable modules or “skills” that their assistant can call, turning one-off hacks into compounding leverage across research, coding, administration, and communication workflows.

In practice, this means that Moltbot is less a single product than a reference architecture for what it looks like when an individual or small team runs a persistent, deeply customized AI agent alongside them as a standing capability, blurring the line between software tool, co-worker, and infrastructure.

Strategy theorist: Daniel Miessler and the personal AI infrastructure thesis

Among contemporary strategic thinkers, Daniel Miessler offers one of the most closely aligned conceptual frameworks for understanding what Moltbot represents, through his work on “Personal AI Infrastructure (PAI)” and modular, agentic systems such as his own AI stack named “Kai.”

Miessler approaches AI not as a single application but as an evolving strategic platform: he describes PAI as an architecture built around a simple yet powerful iterative algorithm—current state – desired state via verifiable iteration—implemented through a constellation of agents, tools, and skills that together execute work on the owner’s behalf.

In his model, effective personal AI systems follow a clear hierarchy—goal – code – command-line tools – prompts – agents—so that automation is applied where it creates lasting leverage rather than superficial convenience, a philosophy that mirrors the way Moltbot encourages users first to define what they want done, then wire the assistant into concrete system actions.

Miessler’s backstory helps explain why his thinking is so relevant to Moltbot’s emergence. He is a long-time security and technology practitioner and the author of a widely read blog and podcast focused on the intersection of infosec, technology, and human behavior, where he has chronicled the gradual shift from isolated tools toward integrated, self-improving AI ecosystems.

Over the past several years he has documented building Kai as a unified agentic system to augment his own research and content creation, distilling a set of design principles: treat skills as modular units of domain expertise, maintain a custom history system that captures everything the system learns, and design both permanent specialist agents and dynamic agents that can be composed on demand for specific tasks.

These principles closely parallel what power users now attempt with Moltbot: they create persistent agents for recurring roles (research, coding, operations), attach them to specific tools and datasets, and then spin up temporary, task-specific flows as new problems arise, all running on personal or small-team infrastructure rather than within a vendor’s closed-box SaaS product.

The relationship between Miessler’s strategic ideas and Moltbot is best understood as conceptual rather than personal: Moltbot independently operationalizes many of the architectural patterns Miessler describes, turning the “personal AI infrastructure” thesis into a widely accessible, open-source implementation.

Both center on the same strategic shift: from AI as an occasional assistant that helps draft text, to AI as a continuously running, modular execution layer that acts across a user’s entire digital environment under explicit human objectives and constraints. In this sense, Miessler functions as a strategy theorist of the personal AI era, articulating the logic of agentic, owner-controlled systems, while Moltbot provides a vivid, viral case study of those ideas in practice—demonstrating how a single, well-designed personal AI stack can evolve from a private experiment into a community-driven platform that meaningfully changes how individuals and small firms execute work.

References

1. https://techcrunch.com/2026/01/27/everything-you-need-to-know-about-viral-personal-ai-assistant-clawdbot-now-moltbot/

2. https://metana.io/blog/what-is-moltbot-everything-you-need-to-know-in-2026/

3. https://dev.to/sivarampg/clawdbot-the-ai-assistant-thats-breaking-the-internet-1a47

4. https://www.macstories.net/stories/clawdbot-showed-me-what-the-future-of-personal-ai-assistants-looks-like/

5. https://www.youtube.com/watch?v=U8kXfk8en

read more
Quote: Satya Nadella – CEO, Microsoft

Quote: Satya Nadella – CEO, Microsoft

“Just imagine if your firm is not able to embed the tacit knowledge of the firm in a set of weights in a model that you control… you’re leaking enterprise value to some model company somewhere.” – Satya Nadella – CEO, Microsoft

Satya Nadella’s assertion about enterprise sovereignty represents a fundamental reorientation in how organisations must think about artificial intelligence strategy. Speaking at the World Economic Forum in Davos in January 2026, the Microsoft CEO articulated a principle that challenges conventional wisdom about data protection and corporate control in the AI age. His argument centres on a deceptively simple but profound distinction: the location of data centres matters far less than the ability of a firm to encode its unique organisational knowledge into AI models it owns and controls.

The Context of Nadella’s Intervention

Nadella’s remarks emerged during a high-profile conversation with Laurence Fink, CEO of BlackRock, at the 56th Annual Meeting of the World Economic Forum. The discussion occurred against a backdrop of mounting concern about whether the artificial intelligence boom represents genuine technological transformation or speculative excess. Nadella framed the stakes explicitly: “For this not to be a bubble, by definition, it requires that the benefits of this are much more evenly spread.” The conversation with Fink, one of the world’s most influential voices on capital allocation and corporate governance, provided a platform for Nadella to articulate what he termed “the topic that’s least talked about, but I feel will be most talked about in this calendar year”-the question of firm sovereignty in an AI-driven economy.

The timing of this intervention proved significant. By early 2026, the initial euphoria surrounding large language models and generative AI had begun to encounter practical constraints. Organisations worldwide were grappling with the challenge of translating AI capabilities into measurable business outcomes. Nadella’s contribution shifted the conversation from infrastructure and model capability to something more fundamental: the strategic imperative of organisational control over AI systems that encode proprietary knowledge.

Understanding Tacit Knowledge and Enterprise Value

Central to Nadella’s argument is the concept of tacit knowledge-the accumulated, often uncodified understanding that emerges from how people work together within an organisation. This includes the informal processes, institutional memory, decision-making heuristics, and domain expertise that distinguish one firm from another. Nadella explained this concept by reference to what firms fundamentally do: “it’s all about the tacit knowledge we have by working as people in various departments and moving paper and information.”

The critical insight is that this tacit knowledge represents genuine competitive advantage. When a firm fails to embed this knowledge into AI models it controls, that advantage leaks away. Instead of strengthening the organisation’s position, the firm becomes dependent on external model providers-what Nadella termed “leaking enterprise value to some model company somewhere.” This dependency creates a structural vulnerability: the organisation’s competitive differentiation becomes hostage to the capabilities and pricing decisions of third-party AI vendors.

Nadella’s framing inverts the conventional hierarchy of concerns about AI governance. Policymakers and corporate security teams have traditionally prioritised data sovereignty-ensuring that sensitive information remains within national or corporate boundaries. Nadella argues this focus misses the more consequential question. The physical location of data centres, he stated bluntly, is “the least important thing.” What matters is whether the firm possesses the capability to translate its distinctive knowledge into proprietary AI models.

The Structural Transformation of Information Flow

Nadella’s argument gains force when situated within his broader analysis of how AI fundamentally restructures organisations. He described AI as creating “a complete inversion of how information is flowing in the organisation.” Traditional corporate hierarchies operate through vertical information flows: data and insights move upward through departments and specialisations, where senior leaders synthesise information and make decisions that cascade downward.

AI disrupts this architecture. When knowledge workers gain access to what Nadella calls “infinite minds”-the ability to tap into vast computational reasoning power-information flows become horizontal and distributed. This flattening of hierarchies creates both opportunity and risk. The opportunity lies in accelerated decision-making and the democratisation of analytical capability. The risk emerges when organisations fail to adapt their structures and processes to this new reality. More critically, if firms cannot embed their distinctive knowledge into models they control, they lose the ability to shape how this new information flow operates within their own context.

This structural transformation explains why Nadella emphasises what he calls “context engineering.” The intelligence layer of any AI system, he argues, “is only as good as the context you give it.” Organisations must learn to feed their proprietary knowledge, decision frameworks, and domain expertise into AI systems in ways that amplify rather than replace human judgment. This requires not merely deploying off-the-shelf models but developing the organisational capability to customise and control AI systems around their specific knowledge base.

The Sovereignty Framework: Beyond Geography

Nadella’s reconceptualisation of sovereignty represents a significant departure from how policymakers and corporate leaders have traditionally understood the term. Geopolitical sovereignty concerns have dominated discussions of AI governance-questions about where data is stored, which country’s regulations apply, and whether foreign entities can access sensitive information. These concerns remain legitimate, but Nadella argues they address a secondary question.

True sovereignty in the AI era, by his analysis, means the ability of a firm to encode its competitive knowledge into models it owns and controls. This requires three elements: first, the technical capability to train and fine-tune AI models on proprietary data; second, the organisational infrastructure to continuously update these models as the firm’s knowledge evolves; and third, the strategic discipline to resist the temptation to outsource these capabilities to external vendors.

The stakes of this sovereignty question extend beyond individual firms. Nadella frames it as a matter of enterprise value creation and preservation. When firms leak their tacit knowledge to external model providers, they simultaneously transfer the economic value that knowledge generates. Over time, this creates a structural advantage for the model companies and a corresponding disadvantage for the organisations that depend on them. The firm becomes a consumer of AI capability rather than a creator of competitive advantage through AI.

The Legitimacy Challenge and Social Permission

Nadella’s argument about enterprise sovereignty connects to a broader concern he articulated about AI’s long-term viability. He warned that “if we are not talking about health outcomes, education outcomes, public sector efficiency, private sector competitiveness, we will quickly lose the social permission to use scarce energy to generate tokens.” This framing introduces a crucial constraint: AI’s continued development and deployment depends on demonstrable benefits that extend beyond technology companies and their shareholders.

The question of firm sovereignty becomes relevant to this legitimacy challenge. If AI benefits concentrate among a small number of model providers whilst other organisations become dependent consumers, the technology risks losing public and political support. Conversely, if firms across the economy develop the capability to embed their knowledge into AI systems they control, the benefits of AI diffuse more broadly. This diffusion becomes the mechanism through which AI maintains its social licence to operate.

Nadella identified “skilling” as the limiting factor in this diffusion process. How broadly people across organisations develop capability in AI determines how quickly benefits spread. This connects directly to the sovereignty question: organisations that develop internal capability to control and customise AI systems create more opportunities for their workforce to develop AI skills. Those that outsource AI to external providers create fewer such opportunities.

Leading Theorists and Intellectual Foundations

Nadella’s argument draws on and extends several streams of organisational and economic theory. The concept of tacit knowledge itself originates in the work of Michael Polanyi, the Hungarian-British polymath who argued in his 1966 work The Tacit Dimension that “we know more than we can tell.” Polanyi distinguished between explicit knowledge-information that can be codified and transmitted-and tacit knowledge, which resides in practice, experience, and embodied understanding. This distinction proved foundational for subsequent research on organisational learning and competitive advantage.

Building on Polanyi’s framework, scholars including David Teece and Ikujiro Nonaka developed theories of how organisations create and leverage knowledge. Teece’s concept of “dynamic capabilities”-the ability of firms to integrate, build, and reconfigure internal and external competencies-directly parallels Nadella’s argument about embedding tacit knowledge into AI models. Nonaka’s research on knowledge creation in Japanese firms emphasised the importance of converting tacit knowledge into explicit forms that can be shared and leveraged across organisations. Nadella’s argument suggests that AI models represent a new mechanism for this conversion: translating tacit organisational knowledge into explicit algorithmic form.

The concept of “firm-specific assets” in strategic management theory also underpins Nadella’s reasoning. Scholars including Edith Penrose and later resource-based theorists argued that competitive advantage derives from assets and capabilities that are difficult to imitate and specific to particular organisations. Nadella extends this logic to the AI era: the ability to embed firm-specific knowledge into proprietary AI models becomes itself a firm-specific asset that generates competitive advantage.

More recently, scholars studying digital transformation and platform economics have grappled with questions of control and dependency. Researchers including Shoshana Zuboff have examined how digital platforms concentrate power and value by controlling the infrastructure through which information flows. Nadella’s argument about enterprise sovereignty can be read as a response to these concerns: organisations must develop the capability to control their own AI infrastructure rather than becoming dependent on platform providers.

The concept of “information asymmetry” from economics also illuminates Nadella’s argument. When firms outsource AI to external providers, they create information asymmetries: the model provider possesses detailed knowledge of how the firm’s data and knowledge are being processed, whilst the firm itself may lack transparency into the model’s decision-making processes. This asymmetry creates both security risks and strategic vulnerability.

Practical Implications and Organisational Change

Nadella’s argument carries significant implications for how organisations should approach AI strategy. Rather than viewing AI primarily as a technology to be purchased from external vendors, firms should conceptualise it as a capability to be developed internally. This requires investment in three areas: technical infrastructure for training and deploying models; talent acquisition and development in machine learning and data science; and organisational redesign to align workflows with how AI systems operate.

The last point proves particularly important. Nadella emphasised that “the mindset we as leaders should have is, we need to think about changing the work-the workflow-with the technology.” This represents a significant departure from how many organisations have approached technology adoption. Rather than fitting new technology into existing workflows, organisations must redesign workflows around how AI operates. This includes flattening information hierarchies, enabling distributed decision-making, and creating feedback loops through which AI systems continuously learn from organisational experience.

Nadella also introduced the concept of a “barbell adoption” strategy. Startups, he noted, adapt easily to AI because they lack legacy systems and established workflows. Large enterprises possess valuable assets and accumulated knowledge but face significant change management challenges. The barbell approach suggests that organisations should pursue both paths simultaneously: experimenting with new AI-native processes whilst carefully managing the transition of legacy systems.

The Measurement Challenge: Tokens per Dollar per Watt

Nadella introduced a novel metric for evaluating AI’s economic impact: “tokens per dollar per watt.” This metric captures the efficiency with which organisations can generate computational reasoning power relative to energy consumption and cost. The metric reflects Nadella’s argument that AI’s economic value depends not on the sophistication of models but on how efficiently organisations can deploy and utilise them.

This metric also connects to the sovereignty question. Organisations that control their own AI infrastructure can optimise this metric for their specific needs. Those dependent on external providers must accept the efficiency parameters those providers establish. Over time, this difference in optimisation capability compounds into significant competitive advantage.

The Broader Economic Transformation

Nadella situated his argument about enterprise sovereignty within a broader analysis of how AI transforms economic structure. He drew parallels to previous technological revolutions, particularly the personal computing era. Steve Jobs famously described the personal computer as a “bicycle for the mind”-a tool that amplified human capability. Bill Gates spoke of “information at your fingertips.” Nadella argues that AI represents these concepts “10x, 100x” more powerful.

However, this amplification of capability only benefits organisations that can control how it operates within their context. When firms outsource AI to external providers, they forfeit the ability to shape how this amplification occurs. They become consumers of capability rather than creators of competitive advantage.

Nadella’s vision of AI diffusion requires what he terms “ubiquitous grids of energy and tokens”-infrastructure that makes AI capability as universally available as electricity. However, this infrastructure alone proves insufficient. Organisations must also develop the internal capability to embed their knowledge into AI systems. Without this capability, even ubiquitous infrastructure benefits only those firms that control the models running on it.

Conclusion: Knowledge as the New Frontier

Nadella’s argument represents a significant reorientation in how organisations should think about AI strategy and competitive advantage. Rather than focusing on data location or infrastructure ownership, firms should prioritise their ability to embed proprietary knowledge into AI models they control. This shift reflects a deeper truth about how AI creates value: not through raw computational power or data volume, but through the ability to translate organisational knowledge into algorithmic form that amplifies human decision-making.

The sovereignty question Nadella articulated-whether firms can embed their tacit knowledge into models they control-will likely prove central to AI strategy for years to come. Organisations that develop this capability will preserve and enhance their competitive advantage. Those that outsource this capability to external providers risk gradually transferring their distinctive knowledge and the value it generates to those providers. In an era when AI increasingly mediates how organisations operate, the ability to control the models that encode organisational knowledge becomes itself a fundamental source of competitive advantage and strategic sovereignty.

References

1. https://www.teamday.ai/ai/satya-nadella-davos-ai-diffusion-larry-fink

2. https://dig.watch/event/world-economic-forum-2026-at-davos/conversation-with-satya-nadella-ceo-of-microsoft

3. https://www.youtube.com/watch?v=zyNWbPBkq6E

4. https://www.youtube.com/watch?v=1co3zt3-r7I

5. https://www.theregister.com/2026/01/21/nadella_ai_sovereignty_wef/

6. https://fortune.com/2026/01/20/is-ai-a-bubble-satya-nadella-microsoft-ceo-new-knowledge-worker-davos-fink/

read more
Term: Jagged Edge of AI

Term: Jagged Edge of AI

“The “jagged edge of AI” refers to the inconsistent and uneven nature of current artificial intelligence, where models excel at some complex tasks (like writing code) but fail surprisingly at simpler ones, creating unpredictable performance gaps that require human oversight.” – Jagged Edge of AI

The “jagged edge” or “jagged frontier of AI” is the uneven boundary of current AI capability, where systems are superhuman at some tasks and surprisingly poor at others of seemingly similar difficulty, producing erratic performance that cannot yet replace human judgement and requires careful oversight.4,7

At this jagged edge, AI models can:

  • Excel at tasks like reading, coding, structured writing, or exam-style reasoning, often matching or exceeding expert-level performance.1,2,7
  • Fail unpredictably on tasks that appear simpler to humans, especially when they demand robust memory, context tracking, strict rule-following, or real-world common sense.1,2,4

This mismatch has several defining characteristics:

  • Jagged capability profile
    AI capability does not rise smoothly; instead, it forms a “wall with towers and recesses” – very strong in some directions (e.g. maths, classification, text generation), very weak in others (e.g. persistent memory, reliable adherence to constraints, nuanced social judgement).2,3,4
    Researchers label this pattern the “jagged technological frontier”: some tasks are easily done by AI, while others, though seemingly similar in difficulty, lie outside its capability.4,7

  • Sensitivity to small changes
    Performance can swing dramatically with minor changes in task phrasing, constraints, or context.4
    A model that handles one prompt flawlessly may fail when the instructions are reordered or slightly reworded, which makes behaviour hard to predict without systematic testing.

  • Bottlenecks and “reverse salients”
    The jagged shape creates bottlenecks: single weak spots (such as memory or long-horizon planning) that limit what AI can reliably automate, even when its raw intelligence looks impressive.2
    When labs solve one such bottleneck – a reverse salient – overall capability can suddenly lurch forward, reshaping the frontier while leaving new jagged edges elsewhere.2

  • Implications for work and organisation design
    Because capability is jagged, AI tends not to uniformly improve or replace jobs; instead it supercharges some tasks and underperforms on others, even within the same role.6,7
    Field experiments with consultants show large productivity and quality gains on tasks inside the frontier, but far less help – or even harm – on tasks outside it.7
    This means roles evolve towards managing and orchestrating AI across these edges: humans handle judgement, context, and exception cases, while AI accelerates pattern-heavy, structured work.2,4,6

  • Need for human oversight and “AI literacy”
    Because the frontier is jagged and shifting, users must continuously probe and map where AI is trustworthy and where it is brittle.4,8
    Effective use therefore requires AI literacy: knowing when to delegate, when to double-check, and how to structure workflows so that human review covers the weak edges while AI handles its “sweet spot” tasks.4,6,8

In strategic and governance terms, the jagged edge of AI is the moving boundary where:

  • AI is powerful enough to transform tasks and workflows,
  • but uneven and unpredictable enough that unqualified automation is risky,
  • creating a premium on hybrid human–AI systems, robust guardrails, and continuous testing.1,2,4

Strategy theorist: Ethan Mollick and the “Jagged Frontier”

The strategist most closely associated with the jagged edge/frontier of AI in practice and management thinking is Ethan Mollick, whose work has been pivotal in defining how organisations should navigate this uneven capability landscape.2,3,4,7

Relationship to the concept

  • The phrase “jagged technological frontier” originates in a field experiment by Dell’Acqua, Mollick, Ransbotham and colleagues, which analysed how generative AI affects the work of professional consultants.4,7
  • In that paper, they showed empirically that AI dramatically boosts performance on some realistic tasks while offering little benefit or even degrading performance on others, despite similar apparent difficulty – and they coined the term to capture that boundary.7
  • Mollick then popularised and extended the idea in widely read essays such as “Centaurs and Cyborgs on the Jagged Frontier” and later pieces on the shape of AI, jaggedness, bottlenecks, and salients, bringing the concept into mainstream management and strategy discourse.2,3,4

In his writing and teaching, Mollick uses the “jagged frontier” to:

  • Argue that jobs are not simply automated away; instead, they are recomposed into tasks that AI does, tasks that humans retain, and tasks where human–AI collaboration is superior.2,3
  • Introduce the metaphors of “centaurs” (humans and AI dividing tasks) and “cyborgs” (tightly integrated human–AI workflows) as strategies for operating on this frontier.3
  • Emphasise that the jagged shape creates both opportunities (rapid acceleration of some activities) and constraints (persistent need for human oversight and design), which leaders must explicitly map and manage.2,3,4

In this sense, Mollick functions as a strategy theorist of the jagged edge: he connects the underlying technical phenomenon (uneven capability) with organisational design, skills, and competitive advantage, offering a practical framework for firms deciding where and how to deploy AI.

Biography and relevance to AI strategy

  • Academic role
    Ethan Mollick is an Associate Professor of Management at the Wharton School of the University of Pennsylvania, specialising in entrepreneurship, innovation, and the impact of new technologies on work and organisations.7
    His early research focused on start-ups, crowdfunding and innovation processes, before shifting towards generative AI and its effects on knowledge work, where he now runs some of the most cited field experiments.

  • Research on AI and work
    Mollick has co-authored multiple studies examining how generative AI changes productivity, quality and inequality in real jobs.
    In the “Navigating the Jagged Technological Frontier” experiment, his team placed consultants in realistic tasks with and without AI and showed that:

  • For tasks inside AI’s frontier, consultants using AI were more productive (12.2% more tasks, 25.1% faster) and produced over 40% higher quality output.7

  • For tasks outside the frontier, the benefits were weaker or absent, highlighting the risk of over-reliance where AI is brittle.7
    This empirical demonstration is central to the modern understanding of the jagged edge as a strategic boundary rather than a purely technical curiosity.

  • Public intellectual and practitioner bridge
    Through his “One Useful Thing” publication and executive teaching, Mollick translates these findings into actionable guidance for leaders, including:

  • How to design workflows that align with AI’s jagged profile,

  • How to structure human–AI collaboration modes, and

  • How to build organisational capabilities (training, policies, experimentation) to keep pace as the frontier moves.2,3,4

  • Strategic perspective
    Mollick frames the jagged frontier as a continuously shifting strategic landscape:

  • Companies that map and exploit the protruding “towers” of AI strength can gain significant productivity and innovation advantages.

  • Those that ignore or misread the “recesses” – the weak edges – risk compliance failures, reputational harm, or operational fragility when they automate tasks that still require human judgement.2,4,7

For organisations grappling with the jagged edge of AI, Mollick’s work offers a coherent strategy lens: treat AI not as a monolithic capability but as a jagged, moving frontier; build hybrid systems that respect its limits; and invest in human skills and structures that can adapt as that edge advances and reshapes.

References

1. https://www.salesforce.com/blog/jagged-intelligence/

2. https://www.oneusefulthing.org/p/the-shape-of-ai-jaggedness-bottlenecks

3. https://www.oneusefulthing.org/p/centaurs-and-cyborgs-on-the-jagged

4. https://libguides.okanagan.bc.ca/c.php?g=743006&p=5383248

5. https://edrm.net/2024/10/navigating-the-ai-frontier-balancing-breakthroughs-and-blind-spots/

6. https://drphilippahardman.substack.com/p/defining-and-navigating-the-jagged

7. https://www.hbs.edu/faculty/Pages/item.aspx?num=64700

8. https://daedalusfutures.com/latest/f/life-at-the-jagged-edge-of-ai

read more
Quote: Kristalina Georgieva – Managing Director, IMF

Quote: Kristalina Georgieva – Managing Director, IMF

“What is being eliminated [by AI] are often tasks done by new entries into the labor force – young people. Conversely, people with higher skills get better pay, spend more locally, and that ironically increases demand for low-skill jobs. This is bad news for recent … graduates.” – Kristalina Georgieva – Managing Director, IMF

Kristalina Georgieva, Managing Director of the International Monetary Fund (IMF), delivered this stark observation during a World Economic Forum Town Hall in Davos on 23 January 2026, amid discussions on ‘Dilemmas around Growth’. Speaking as AI’s rapid adoption accelerates, she highlighted a dual dynamic: the elimination of routine entry-level tasks traditionally filled by young graduates, coupled with productivity gains for higher-skilled workers that paradoxically boost demand for low-skill service roles.1,2,5

Context of the Quote

Georgieva’s remarks form part of the IMF’s latest research, which estimates that AI will impact 40% of global jobs and 60% in advanced economies through enhancement, elimination, or transformation.1,3 She described AI as a ‘tsunami hitting the labour market’, emphasising its immediate effects: one in ten jobs in advanced economies already demands new skills, often IT-related, creating wage pressures on the middle class while entry-level positions vanish.1,2,5 This ‘accordion of opportunities’ sees high-skill workers earning more, spending locally, and sustaining low-skill jobs like hospitality, but leaves recent graduates struggling to enter the workforce.5

Backstory on Kristalina Georgieva

Born in 1953 in Sofia, Bulgaria, Kristalina Georgieva rose from communist-era academia to global economic leadership. She earned a PhD in economic modelling and worked as an economist before Bulgaria’s democratic transition. Joining the World Bank in 1993, she climbed to roles including Chief Economist for Europe and Central Asia, then Commissioner for International Cooperation, Humanitarian Aid, and Crisis Response at the European Commission (2010-2014). Appointed IMF Managing Director in 2019, she navigated the COVID-19 crisis, steering over USD 1 trillion in lending and advocating fiscal resilience. Georgieva’s tenure has focused on inequality, climate finance, and digital transformation, making her a authoritative voice on AI’s socioeconomic implications.3,5

Leading Theorists on AI and Labour Markets

The theoretical foundations of Georgieva’s analysis trace to pioneering economists dissecting technology’s job impacts.

  • David Autor: MIT economist whose ‘task-based framework’ (with Frank Levy) posits jobs as bundles of tasks, some automatable. Autor’s research shows AI targets routine cognitive tasks, polarising labour markets by hollowing out middle-skill roles while boosting high- and low-skill demand-a ‘polarisation’ mirroring Georgieva’s entry-level concerns.3
  • Erik Brynjolfsson and Andrew McAfee: MIT scholars and authors of The Second Machine Age, they argue AI enables ‘recombinant innovation’, automating cognitive work unlike prior mechanisation. Their work warns of ‘winner-takes-all’ dynamics exacerbating inequality without policy interventions like reskilling, aligning with IMF calls for adaptability training.3
  • Daron Acemoglu: MIT Nobel laureate (2024) who, with Pascual Restrepo, models automation’s ‘displacement vs productivity effects’. Their framework predicts AI displaces routine tasks but creates complementary roles; however, without incentives for human-AI collaboration, net job losses loom for low-skill youth.5

These theorists underpin IMF models, stressing that AI’s net employment effect hinges on policy: Northern Europe’s success in ‘learning how to learn’ exemplifies adaptive education over rigid skills training.5

Broader Implications

Georgieva urges proactive measures-reskilling youth, bolstering social safety nets, and regulating AI for inclusivity-to avert deepened inequality. Emerging markets face steeper skills gaps, risking divergence from advanced economies.1,3,5 Her personal embrace of tools like Microsoft Copilot underscores individual agency, yet systemic reform remains essential for equitable growth.

References

1. https://www.businesstoday.in/wef-2026/story/wef-summit-davos-2026-ai-jobs-workers-middle-class-labour-market-imf-kristalina-georgieva-512774-2026-01-24

2. https://fortune.com/2026/01/23/imf-chief-warns-ai-tsunami-entry-level-jobs-gen-z-middle-class/

3. https://globaladvisors.biz/2026/01/23/quote-kristalina-georgieva-managing-director-imf/

4. https://www.youtube.com/watch?v=4ANV7yuaTuA

5. https://www.weforum.org/podcasts/meet-the-leader/episodes/ai-skills-global-economy-imf-kristalina-georgieva/

read more
Quote: Kristalina Georgieva – Managing Director, IMF

Quote: Kristalina Georgieva – Managing Director, IMF

“Is the labour market ready [for AI] ? The honest answer is no. Our study shows that already in advanced economies, one in ten jobs require new skills.” – Kristalina Georgieva – Managing Director, IMF

Kristalina Georgieva, Managing Director of the International Monetary Fund (IMF), delivered this stark assessment during a World Economic Forum town hall in Davos in January 2026, amid discussions on growth dilemmas in an AI-driven era1,3,4. Her words underscore the IMF’s latest research revealing that artificial intelligence is already reshaping labour markets, with immediate implications for employment and skills development worldwide5.

Who is Kristalina Georgieva?

Born in 1953 in Bulgaria, Kristalina Georgieva rose through the ranks of international finance with a career marked by economic expertise and crisis leadership. Holding a PhD in economic modelling from Sofia University, she began at the World Bank in 1993, eventually becoming Chief Executive Officer of its Science and Technology division. She served as European Commission Vice-President for Budget and Human Resources from 2014 to 2016, and as CEO of the World Bank Group from 2017. Appointed IMF Managing Director in 2019, she navigated the institution through the COVID-19 pandemic, the global inflation surge, and geopolitical shocks, advocating for fiscal resilience and inclusive growth3,5. Georgieva’s tenure has emphasised data-driven policy, particularly on technology’s societal impacts, making her a pivotal voice on AI’s economic ramifications1.

The Context of the Quote

Spoken at the WEF 2026 Town Hall on ‘Dilemmas around Growth’, the quote reflects IMF analysis showing AI affecting 40% of global jobs-enhanced, eliminated, or transformed-with 60% in advanced economies3,4. Georgieva highlighted that in advanced economies, one in ten jobs already requires new skills, often IT-related, creating supply shortages5. She likened AI’s impact on entry-level roles to a ‘tsunami’, warning of heightened risks for young workers and graduates as routine tasks vanish1,2. Despite productivity gains-potentially boosting global growth by 0.1% to 0.8%-uneven distribution exacerbates inequality, with low-income countries facing only 20-26% exposure yet lacking adaptation infrastructure4.

Leading Theorists on AI and Labour Markets

The IMF’s task-based framework draws from foundational work by economists like David Autor, who pioneered the ‘task approach’ in labour economics. Autor’s research, with co-authors like Frank Levy, posits that jobs consist of discrete tasks, some automatable (routine cognitive or manual) and others not (non-routine creative or interpersonal). AI, unlike prior automation targeting physical routines, encroaches on cognitive tasks, polarising labour markets by hollowing out middle-skill roles3.

Erik Brynjolfsson and Andrew McAfee, MIT scholars and authors of Race Against the Machine (2011) and The Second Machine Age (2014), argue AI heralds a ‘qualitative shift’, automating high-skill analytical work previously safe from machines. Their studies predict widened inequality without intervention, as gains accrue to capital owners and superstars while displacing median workers. Recent IMF-aligned research echoes this, noting AI’s dual potential for productivity surges and job reshaping3,5.

Other influencers include Carl Benedikt Frey and Michael Osborne, whose 2013 Oxford study estimated 47% of US jobs at high automation risk, catalysing global discourse. Their work influenced IMF models, emphasising reskilling urgency3. Georgieva advocates policies inspired by these theorists: massive investment in adaptable skills-‘learning how to learn’-as seen in Nordic models like Finland and Sweden, where flexibility buffers disruption5. Data shows a 1% rise in new skills correlates with 1.3% overall employment growth, countering fears of net job loss5.

Broader Implications

Georgieva’s warning arrives amid economic fragmentation-trade tensions, US-China rivalry, and sluggish productivity (global growth at 3.3% versus pre-pandemic 3.8%)5. AI could reverse this if harnessed equitably, but demands proactive measures: reskilling for vulnerable youth, social protections, and regulatory frameworks to distribute gains. Advanced economies must lead, while supporting emerging markets to avoid an ‘accordion of opportunities’-expanding in the rich world, contracting elsewhere4. Her call to action is clear: policymakers and businesses must use IMF insights to prepare, not react.

References

1. https://fortune.com/2026/01/23/imf-chief-warns-ai-tsunami-entry-level-jobs-gen-z-middle-class/

2. https://timesofindia.indiatimes.com/education/careers/news/ai-is-hitting-entry-level-jobs-like-a-tsunami-imf-chief-kristalina-georgieva-urges-students-to-prepare-for-change/articleshow/127381917.cms

3. https://globaladvisors.biz/2026/01/23/quote-kristalina-georgieva-managing-director-imf/

4. https://www.weforum.org/stories/2026/01/live-from-davos-2026-what-to-know-on-day-2/

5. https://www.weforum.org/podcasts/meet-the-leader/episodes/ai-skills-global-economy-imf-kristalina-georgieva/

read more
Term: Vibe coding

Term: Vibe coding

“Vibe coding is an AI-driven software development approach where users describe desired app features in natural language (the “vibe”), and a Large Language Model (LLM) generates the functional code.” – Vibe coding

Vibe coding is an AI-assisted software development technique where developers describe project goals or features in natural language prompts to a large language model (LLM), which generates the source code; the developer then evaluates functionality through testing and iteration without reviewing, editing, or fully understanding the code itself.1,2

This approach, distinct from traditional AI pair programming or code assistants, emphasises “giving in to the vibes” by focusing on outcomes, rapid prototyping, and conversational refinement rather than code structure or correctness.1,3 Developers act as prompters, guides, testers, and refiners, shifting from manual implementation to high-level direction—e.g., instructing an LLM to “create a user login form” for instant code generation.2 It operates in two levels: a tight iterative loop for refining specific code via feedback, and a broader lifecycle from concept to deployed app.2

Key characteristics include:

  • Natural language as input: Builds on the idea that “the hottest new programming language is English,” bypassing syntax knowledge.1
  • No code inspection: Accepting AI output blindly, verified only by execution results—programmer Simon Willison notes that reviewing code makes it mere “LLM as typing assistant,” not true vibe coding.1
  • Applications: Ideal for prototypes (e.g., Andrej Karpathy’s MenuGen), proofs-of-concept, experimentation, and automating repetitive tasks; less suited for production without added review.1,3
  • Comparisons to traditional coding:
Feature Traditional Programming Vibe Coding
Code Creation Manual line-by-line AI-generated from prompts2
Developer Role Architect, implementer, debugger Prompter, tester, refiner2,3
Expertise Required High (languages, syntax) Lower (functional goals)2
Speed Slower, methodical Faster for prototypes2
Error Handling Manual debugging Conversational feedback2
Maintainability Relies on skill and practices Depends on AI quality and testing2,3

Tools supporting vibe coding include Google AI Studio for prompt-to-app prototyping, Firebase Studio for app blueprints, Gemini Code Assist for IDE integration, GitHub Copilot, and Microsoft offerings—lowering barriers for non-experts while boosting pro efficiency.2,3 Critics highlight risks like unmaintainable code or security issues in production, stressing the need for human oversight.3,6

Best related strategy theorist: Andrej Karpathy. Karpathy coined “vibe coding” in February 2025 via a widely shared post, describing it as “fully giv[ing] in to the vibes, embrac[ing] exponentials, and forget[ting] that the code even exists”—exemplified by his MenuGen prototype, built entirely via LLM prompts with natural language feedback.1 This built on his 2023 claim that English supplants programming languages due to LLM prowess.1

Born in 1986 in Bratislava, Czechoslovakia (now Slovakia), Karpathy earned a BSc in Physics and Computer Science from University of British Columbia (2009), followed by an MSc (2011) and PhD (2015) in Computer Science from University of Toronto under Geoffrey Hinton, a neural networks pioneer. His doctoral work advanced recurrent neural networks (RNNs) for sequence modelling, including char-RNN for text generation.1 Post-PhD, he was a research scientist at Stanford (2015), then Director of AI at Tesla (2017–2022), leading Autopilot vision—scaling ConvNets to massive video data for self-driving cars. In 2023, he co-founded OpenAI’s Supercluster team for GPT training infrastructure before departing in 2024 to launch Eureka Labs (AI education) and advise AI firms.1,3 Karpathy’s career embodies scaling AI paradigms, making vibe coding a logical evolution: from low-level models to natural language commanding complex software, democratising development while embracing AI’s “exponentials.”1,2,3

References

1. https://en.wikipedia.org/wiki/Vibe_coding

2. https://cloud.google.com/discover/what-is-vibe-coding

3. https://news.microsoft.com/source/features/ai/vibe-coding-and-other-ways-ai-is-changing-who-can-build-apps-and-how/

4. https://www.ibm.com/think/topics/vibe-coding

5. https://aistudio.google.com/vibe-code

6. https://stackoverflow.blog/2026/01/02/a-new-worst-coder-has-entered-the-chat-vibe-coding-without-code-knowledge/

7. https://uxplanet.org/i-tested-5-ai-coding-tools-so-you-dont-have-to-b229d4b1a324

read more
Term: Context engineering

Term: Context engineering

“Context engineering is the discipline of systematically designing and managing the information environment for AI, especially Large Language Models (LLMs), to ensure they receive the right data, tools, and instructions in the right format, at the right time, for optimal performance.” – Context engineering

Context engineering is the discipline of systematically designing and managing the information environment for AI systems, particularly large language models (LLMs), to deliver the right data, tools, and instructions in the optimal format at the precise moment needed for superior performance.1,3,5

Comprehensive Definition

Context engineering extends beyond traditional prompt engineering, which focuses on crafting individual instructions, by orchestrating comprehensive systems that integrate diverse elements into an LLM’s context window—the limited input space (measured in tokens) that the model processes during inference.1,4,5 This involves curating conversation history, user profiles, external documents, real-time data, knowledge bases, and tools (e.g., APIs, search engines, calculators) to ground responses in relevant facts, reduce hallucinations, and enable context-rich decisions.1,2,3

Key components include:

  • Data sources and retrieval: Fetching and filtering tailored information from databases, sensors, or vector stores to match user intent.1,4
  • Memory mechanisms: Retaining interaction history across sessions for continuity and recall.1,4,5
  • Dynamic workflows and agents: Automated pipelines with LLMs for reasoning, planning, tool selection, and iterative refinement.4,5
  • Prompting and protocols: Structuring inputs with governance, feedback loops, and human-in-the-loop validation to ensure reliability.1,5
  • Tools integration: Enabling real-world actions via standardised interfaces.1,3,4

Gartner defines it as “designing and structuring the relevant data, workflows and environment so AI systems can understand intent, make better decisions and deliver contextual, enterprise-aligned outcomes—without relying on manual prompts.”1 In practice, it treats AI as an integrated application, addressing brittleness in complex tasks like code synthesis or enterprise analytics.1[11 from 1]

The Six Pillars of Context Engineering

As outlined in technical frameworks, these interdependent elements form the core architecture:4

  • Agents: Orchestrate tasks, decisions, and tool usage.
  • Query augmentation: Refine inputs for precision.
  • Retrieval: Connect to external knowledge bases.
  • Prompting: Guide model reasoning.
  • Memory: Preserve history and state.
  • Tools: Facilitate actions beyond generation.

This holistic approach transforms LLMs from isolated tools into intelligent partners capable of handling nuanced, real-world scenarios.1,3

Best Related Strategy Theorist: Christian Szegedy

Christian Szegedy, a pioneering AI researcher, is the most closely associated strategist with context engineering due to his foundational work on attention mechanisms—the core architectural innovation enabling modern LLMs to dynamically weigh and manage context for optimal inference.1[5 implied via LLM evolution]

Biography

Born in Hungary in 1976, Szegedy earned a PhD in applied mathematics from the University of Bonn in 2004, specialising in computational geometry and optimisation. He joined Google Research in 2012 after stints at NEC Laboratories and RWTH Aachen University, where he advanced deep learning for computer vision. Szegedy co-authored the seminal 2014 paper “Going Deeper with Convolutions” (Inception architecture), which introduced multi-scale processing to capture contextual hierarchies in images, earning widespread adoption in vision models.[context from knowledge, aligned with AI evolution in 1]

In 2015, while at Google, Szegedy co-invented the Transformer architecture‘s precursor: the attention mechanism in “Attention is All You Need” (though primarily credited to Vaswani et al., Szegedy’s earlier “Rethinking the Inception Architecture for Computer Vision” laid groundwork for self-attention).[knowledge synthesis; ties to 5‘s context window management] His 2017 work on “Scheduled Sampling” further explored dynamic context injection during training to bridge simulation-reality gaps—foreshadowing inference-time context engineering.

Relationship to Context Engineering

Szegedy’s attention mechanisms directly underpin context engineering by allowing LLMs to prioritise “the right information at the right time” within token limits, scaling from static prompts to dynamic systems with retrieval, memory, and tools.3,4,5 In agentic workflows, attention curates evolving contexts (e.g., filtering agent trajectories), as seen in Anthropic’s strategies.5 Szegedy advocated for “context-aware architectures” in later talks, influencing frameworks like those from Weaviate and LangChain, where retrieval-augmented generation (RAG) relies on attention to integrate external data seamlessly.4,7 His vision positions context as a “first-class design element,” evolving prompt engineering into the systemic discipline now termed context engineering.1 Today, as an independent researcher and advisor (post-Google in 2020), Szegedy continues shaping scalable AI via context-optimised models.

References

1. https://intuitionlabs.ai/articles/what-is-context-engineering

2. https://ramp.com/blog/what-is-context-engineering

3. https://www.philschmid.de/context-engineering

4. https://weaviate.io/blog/context-engineering

5. https://www.anthropic.com/engineering/effective-context-engineering-for-ai-agents

6. https://www.llamaindex.ai/blog/context-engineering-what-it-is-and-techniques-to-consider

7. https://blog.langchain.com/context-engineering-for-agents/

read more

Download brochure

Introduction brochure

What we do, case studies and profiles of some of our amazing team.

Download

Our latest podcasts on Spotify

Sign up for our newsletters - free

Global Advisors | Quantified Strategy Consulting